Präsentation herunterladen
1
Berechnung der Kreisfläche
2
Im Altertum gehörte die Geometrie zur Philosophie:
Die großen Gelehrten der Griechen versuchten, alle geometrischen Figuren auf Dreiecke zurückzuführen, deren Fläche sie berechnen konnten.
3
Der Kreis war am schwersten zu berechnen:
Heute wissen wir, dass die Fläche des Kreises ungefähr ¾ des Durchmesser-Quadrates beträgt: A = d2 * 3,14 (Π ) 4
4
Der Kreis war am schwersten zu berechnen:
3,14 ist die abgerundete Kurzform der unendlichen Zahl Π (Pi), auf die man bei der Berechnung des Kreises immer wieder stößt. Heute wissen wir, dass die Fläche des Kreises ungefähr ¾ des Durchmesser-Quadrates beträgt: A = d2 * 3,14 (Π ) 4
5
Der Kreis war am schwersten zu berechnen:
d2 ist der Durchmesser des Kreises – mit sich selber malgenommen. Man könnte sagen: Ein Quadrat mit der Seitenlänge d. Heute wissen wir, dass die Fläche des Kreises ungefähr ¾ des Durchmesser-Quadrates beträgt: A = d2 * 3,14 (Π ) 4
6
Der Kreis war am schwersten zu berechnen:
Heute wissen wir, dass die Fläche des Kreises ungefähr ¾ des Durchmesser-Quadrates beträgt: A = d2 * 3,14 (Π ) 4 Und das Ganze geteilt durch 4. Warum eigentlich 4 ? Schauen wir uns die Sache noch einmal in Ruhe an:
7
Wenn man außen um den Kreis herum ein Quadrat zeichnet, hat das den Flächeninhalt d x d = d2
4
8
Die Kreisfläche ist also KLEINER als d2.
Wenn man außen um den Kreis herum ein Quadrat zeichnet, hat das den Flächeninhalt d x d = d2. Die Kreisfläche ist also KLEINER als d2. Diese Fläche ist grösser als der Kreis: Die orange-farbenen Ecken stehen über.
9
Jetzt basteln wir ein Quadrat in den Kreis hinein:
Diese Fläche ist eindeutig kleiner als der Kreis: Die braunen Kreissegmente stehen über. Und wie groß ist das grüne Quadrat?
10
Jetzt basteln wir ein Quadrat in den Kreis hinein:
Die Strecke vom Mittelpunkt des Kreises bis zur Spitze des Quadrats ist d/2: ein halber d. Diese Fläche ist eindeutig kleiner als der Kreis: Die braunen Kreissegmente stehen über. Die Fläche des Dreiecks berechnet sich als Grundseite mal Höhe geteilt durch 2. Dieser Durchmesser teilt das grüne Quadrat in 2 Dreiecke Hier also d (rote Linie) mal d/2 (grüne Linie) geteilt durch 2.
11
Jetzt basteln wir ein Quadrat in den Kreis hinein:
Und weil das grüne Quadrat aus 2 solchen Dreiecken besteht, ist seine Fläche 2 x d2/4 A = d x d/2 : 2 Diese Fläche ist eindeutig kleiner als der Kreis: Die braunen Kreissegmente stehen über. = d2/2 : 2 = d2/4 Die Fläche des Dreiecks berechnet sich als Grundseite mal Höhe geteilt durch 2. Hier also d (rote Linie) mal d/2 (grüne Linie) geteilt durch 2.
12
Jetzt basteln wir ein Quadrat in den Kreis hinein:
Und weil das grüne Quadrat aus 2 solchen Dreiecken besteht, ist seine Fläche 2/4 d2 Das orange große Quadrat hat eine Fläche von d2. Diese Fläche ist eindeutig kleiner als der Kreis: Die braunen Kreissegmente stehen über. Das sind 4/4 d2. Die Fläche des Kreises liegt also zwischen 2/4 und 4/4 d2. Der Mittelwert ist 3/4 d2.
13
Jetzt basteln wir ein Quadrat in den Kreis hinein:
Das stimmt so ungefähr! Diese Fläche ist eindeutig kleiner als der Kreis: Die braunen Kreissegmente stehen über. Genauer: 3,14/4 d2 Die Fläche des Kreises liegt also zwischen 2/4 und 4/4 d2. Der Mittelwert ist 3/4 d2.
14
Verbesserungsvorschläge an r.schaefer@ibs-bremen.de
Eben: A = d2 * 3,14 (Π ) 4 Verbesserungsvorschläge an
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.