Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Drei Domänen des Lebens

Ähnliche Präsentationen


Präsentation zum Thema: "Drei Domänen des Lebens"—  Präsentation transkript:

1 Drei Domänen des Lebens
Unterschiede auf zellularer und molekularer Ebene definieren drei unterschiedliche "Domänen" Three Domains of Life Differences in cellular and molecular level define three distinct domains of life

2 Alle Zellen brauchen Kohlenstoff  Konstruktionswerkstoff (1)
Alle Zellen brauchen Energie  Aufrechterhaltung des Betriebs (2) Unterscheidung nach Kohlenstoffquelle CO2 oder org. Verbindungen (2) Unterscheidung nach Energiequelle  elektromagnetische Strahlung oder energiereiche Verbindungen (1) Autotrophe  Heterotrophe (2) Phototrophe  Chemotrophe Lithotrophe Organotrophe

3 Heterotrophe Benutzen organische Nährstoffe aus organischen Kohlenstoffquellen. Photo-Heterotrophe Energiequelle: Licht Chemo-heterotrophe Chemo-litho-heterotrophe Energiequelle: anorganische Oxidation purple non-sulfur bacteria, green non-sulfur bacteria and heliobacteria Nitrobacter spp., Wolinella (with H2 as reducing equivalent donor), some Knallgas-bacteria Chemo-heterotrophe Chemo-organo-heterotrophe Energiequelle: organische Oxidation (Kohlenstoffverbindungen)

4 Autotrophe Photo-Autotrophe Chemo-autotrophe nur: Litho-autotrophe
Bauen organische Nährstoffe aus anorganischen Kohlenstoffquellen auf. Kohlenstoffquelle: CO2 (Atmosphäre, Wasser) Photo-Autotrophe Energiequelle: Licht Photosynthese zum Aufbau der Nährstoffe Chemo-autotrophe nur: Litho-autotrophe Energiequelle: anorganische Oxidation „Brennstoffe“: CH4,NH3, NH4+, H2S, Fe2+, SO32- , NO2-, … (alle oxidierbare Anorganik) Chemotrophs are organisms that obtain energy by the oxidation of electron donors in their environments. These molecules can be organic (organotrophs) or inorganic (lithotrophs). The chemotroph designation is in contrast to phototrophs, which utilize solar energy. Chemotrophs can be either autotrophic or heterotrophic. Chemoautotrophs (or chemotrophic autotroph), (Gk: Chemo = chemical, auto = self, troph = nourishment) in addition to deriving energy from chemical reactions, synthesize all necessary organic compounds from carbon dioxide. Chemoautotrophs use inorganic energy sources, such as hydrogen sulfide, elemental sulfur, ferrous iron, molecular hydrogen, and ammonia. Most are bacteria or archaea that live in hostile environments such as deep sea vents and are the primary producers in such ecosystems. Evolutionary scientists believe that the first organisms to inhabit Earth were chemoautotrophs that produced oxygen as a by-product and later evolved into both aerobic, animal-like organisms and photosynthetic, plant-like organisms. Chemoautotrophs generally fall into several groups: methanogens, halophiles, sulfur oxidizers and reducers, nitrifiers, anammoxbacteria, and thermoacidophiles. Chemoheterotrophs (or chemotrophic heterotrophs) (Gk: Chemo = chemical, hetero = (an)other, troph = nourishment) are unable to fix carbon and form their own organic compounds. Chemoheterotrophs can be chemolithoheterotrophs, utilizing inorganic energy sources such as sulfur or chemoorganoheterotrophs, utilizing organic energy sources such as carbohydrates, lipids, and proteins Cyanobakterien grüne Algen grüne Pflanzen die meisten Bacteria und Archaea

5 FIGURE 1–5 Organisms can be classified according to their source of energy (sunlight or oxidizable chemical compounds) and their source of carbon for the synthesis of cellular material.

6 Lebende Systeme beziehen Energie
Aus dem Sonnenlicht Planzen Grüne Bakterien Cyanobakterien Aus Brennstoffen Tiere Die meisten Bakterien Die Energieaufnahme ist notwendig für den Erhalt der komplexen Strukturen und des dynamischen Gleichgewichts (steady state, stationärer Zustand), weit entfernt vom thermodynamischen Gleichgewichtszustand. Living Systems Extract Energy From sunlight plants green bacteria cyanobacteria From fuels animals most bacteria Energy input is needed in order to maintain complex structures and be in a dynamic steady state, away from the equilibrium

7 In chemistry, a steady state is a situation in which all state variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system (compare mass balance). One of the most simple examples of such a system is the case of a bathtub with the tap open but without the bottom plug: after a certain time the water flows in and out at the same rate, so the water level (the state variable being Volume) stabilizes and the system is at steady state. The steady state concept is different from chemical equilibrium. Although both may create a situation where a concentration does not change, in a system at chemical equilibrium, the net reaction rate is zero (products transform into reactants at the same rate as reactants transform into products), while no such limitation exists in the steady state concept. Indeed, there does not have to be a reaction at all for a steady state to develop.

8 In chemistry, a steady state is a situation in which all state variables are constant in spite of ongoing processes that strive to change them. For an entire system to be at steady state, i.e. for all state variables of a system to be constant, there must be a flow through the system (compare mass balance). One of the most simple examples of such a system is the case of a bathtub with the tap open but without the bottom plug: after a certain time the water flows in and out at the same rate, so the water level (the state variable being Volume) stabilizes and the system is at steady state. The steady state concept is different from chemical equilibrium. Although both may create a situation where a concentration does not change, in a system at chemical equilibrium, the net reaction rate is zero (products transform into reactants at the same rate as reactants transform into products), while no such limitation exists in the steady state concept. Indeed, there does not have to be a reaction at all for a steady state to develop.

9 Kooperation phototropher und heterotropher Zellen
Solarenergie als die ultimative Quelle aller biologischer Energie Kooperation phototropher und heterotropher Zellen FIGURE Solar energy as the ultimate source of all biological energy. Photosynthetic organisms use the energy of sunlight to manufacture glucose and other organic products, which heterotrophic cells use as energy and carbon sources.

10 Yearly Solar fluxes & Human Energy Consumption
EJ Wind 2250 EJ Biomass 3000 EJ Primary energy use (2005) 487 EJ Electricity (2005) 56.7 EJ 1 EJ (Exa) = 1018 J

11 1 PW = 1 Petawatt = 1  1015 W

12

13

14

15


Herunterladen ppt "Drei Domänen des Lebens"

Ähnliche Präsentationen


Google-Anzeigen