Präsentation herunterladen
1
Geometrische Optik - Strahlenoptik
Optik ist die Lehre vom Licht Licht breitet sich geradlinig (gleichförmig) und allseitig aus -> Lichtstrahlen Licht ist eine elektromagnetische Welle im für das menschliche Auge sichtbaren Spektralbereich Licht zeigt bei einigen Experimenten Teilchencharakter
2
Strahlenoptik Wellenoptik
Beugung am Spalt abnehmende Wellenlänge k1 k1 n1 Wellenstrahlen sind die Normalen auf den Wellenfronten n2 k2
3
Reflexion und Brechung an ebener Grenzfläche
Stetigkeitsbedingung an Grenzfläche k1 k1 Die Ausbreitung des Lichtes erfolgt im Medium langsamer als im Vakuum. Die Frequenz bleibt beim Medienwechsel konstant. k1 k1 k1|| k1|| k2|| Material Luft Glas Luft k2 k2 Brechungsindex 𝑛≈1 𝑛 𝐺 ≈1,5 𝜆 0 = 𝑐 𝜈 0 𝜆= 𝜆 0 𝑛 𝐺 Wellenlänge 𝜆 0 Wellenvektor 𝑛 𝐺 𝑘 0 𝑘 0
4
Reflexion und Brechung an ebener Grenzfläche
Totalreflexion in Zucker: kn kn kn|| kn||= const.
5
Ebener Spiegel
6
Spiegelsymmetrie Tiefeninversion führt zur Spiegelsymmetrie
Koordinatensystem wird invertiert
7
Bildkonstruktion beim ebenen Spiegel
Reelles Bild: Alle Strahlen schneiden sich Virtuelles Bild: Verlängerungen aller Strahlen schneiden sich Abbildungsmaßstab 1:1 Scharfe Abbildung unabhängig vom Ort
8
Senkrecht aufeinander stehende Spiegel
α α α Drei senkrecht aufeinander stehende Spiegel: Jeder Strahl wird in die Ursprungsrichtung zurückgestreut (Katzenauge)
9
Abbildung am Kugel-, Wölb- oder Hohlspiegel
Reflexion und Brechung an gekrümmten Grenzflächen Abbildung am Kugel-, Wölb- oder Hohlspiegel Näherung: Paraxiale Strahlen Kleinwinkelnäherung
10
Paraxiale Kleinwinkelnäherung & Aberration (Bildfehler)
Nur zentrumsnahe Strahlen führen zu einer scharfen Abbildung Abblenden entfernter Strahlen mit Intensitätsverlust Sphärische Aberration führt zu Unschärfe, da sich die Strahlen nicht mehr in einem Punkt schneiden
11
Abbildung am Konkavspiegel
Im ▲PAC: π= 𝛼+𝜃+(𝜋−𝛽) →𝛽 = 𝛼+𝜃 Im ▲PAP’: π= 𝛼+2𝜃+(𝜋−𝛾) →𝛾 = 𝛼+2𝜃 Für kleine Winkel (zentrumsnah) gilt: 𝛼≈𝑙/𝑔 , 𝛽≈𝑙/𝑟, 𝛾≈𝑙/𝑏 →2𝛽 = 𝛼+𝛾
12
Vergrößerung m von konkavem Spiegel
𝐵 𝐺′ =− 𝑏 𝑔 Strahlensatz (nach Spiegelung von P’ nach oben): 1 𝑔 + 1 𝑏 = 2 𝑟 → 1 𝑏 = 2 𝑟 − 1 𝑔 →𝑏=1/( 2 𝑟 − 1 𝑔 ) → 𝐵 𝐺′ =− 1 𝑔∗( 2 𝑟 − 1 𝑔 ) → 𝐵 𝐺′ =− 1 2𝑔 𝑟 −1 𝑚≡ 𝐵 𝐺′ =− 𝑟/2 𝑔−( 𝑟 2 )
13
Brennpunkt und Brennebene
Parallele Strahlen: 𝑔→∞: 1 𝑔 + 1 𝑏 = 2 𝑟 Spiegelgleichung: 1 𝑔 + 1 𝑏 = 1 𝑓 Brennweite: 𝑓= 1 2 𝑟
14
Bildkonstruktion Achsenparalleler Strahl: Nach Reflektion durch Brennpunkt Brennpunktstrahl: Nach Reflektion achsenparallel Mittelpunktstrahl: In sich selber reflektiert Reflexivität: Vertauschung von Bild und Gegenstand
15
Konvexspiegel Virtuelles verkleinertes Bild
Ebener Fläche, Wölb+Hohlspiegel V19/4101 ff. Reflexion an Experimente: Katakaustik Virtuelles verkleinertes Bild
16
Vorzeichenkonvention
Die Gegenstandsweite g ist positiv für Gegenstände auf der Einfallseite Die Bildweite b ist positiv für Bilder auf der Transmissionsseite, bzw. in der Richtung, in der das Licht reflektiert wird Der Krümmungsradius r ist positiv, wenn der Krümmungsmittelpunkt auf der Transmissionsseite liegt, bzw. der Spiegel konkav ist
17
Brechung an einer sphärischen Oberfläche
Snellius’sches Gesetz: 𝑛 1 𝑠𝑖𝑛 Θ 1 = 𝑛 2 𝑠𝑖𝑛 Θ 2 Für kleine Winkel: 𝑛 1 Θ 1 ≈ 𝑛 2 Θ 2 Im ▲ACP’: π= 𝛾+ 𝜃 2 +(𝜋−𝛽) →𝛽 = 𝛾+ 𝜃 2 =𝛾+ 𝜃 1 𝑛 1 𝑛 2 Im ▲PAC: π= 𝛼+𝛽+(𝜋− 𝜃 1 ) → 𝜃 1 = 𝛼+𝛽 → 𝑛 1 𝛼+ 𝑛 1 𝛽+𝑛 2 𝛾 = 𝑛 2 𝛽 → 𝑛 1 𝛼+𝑛 2 𝛾 = ( 𝑛 2 − 𝑛 1 )𝛽 𝑛 1 𝑔 + 𝑛 2 𝑏 = 𝑛 2 − 𝑛 1 𝑟 Für kleine Winkel (zentrumsnah) gilt: 𝛼≈𝑙/𝑔 , 𝛽≈𝑙/𝑟, 𝛾≈𝑙/𝑏 𝑛 1 𝑔 + 𝑛 2 𝑏 = 𝑛 2 − 𝑛 1 𝑟
18
Brechung an Kugeloberfläche
19
Gegenstands- und bildseitige Brennweite
FG M fG FB M fB
20
Dünne Linse 𝑛 1 𝑔 + 𝑛 2 𝑏 = 𝑛 2 − 𝑛 1 𝑟 Für die erste Grenzfläche:
𝑛 1 𝑔 + 𝑛 2 𝑏 = 𝑛 2 − 𝑛 1 𝑟 Für die erste Grenzfläche: 𝑛 1 ≈1 (𝐿𝑢𝑓𝑡), 𝑛 2 →𝑛 1 𝑔 + 𝑛 𝑏 1 = 𝑛 −1 𝑟 1 Mit dem virtuellen Bild P1’ Für die zweite Grenzfläche: 𝑛 2 ≈1 (𝐿𝑢𝑓𝑡), 𝑛 1 →𝑛 𝑛 𝑔 𝑏 = 1 −𝑛 𝑟 2 Mit dem reellen Bild P’ mit 𝑔 2 =− 𝑏 1 : 1 𝑔 + 1 𝑏 =(𝑛−1) 1 𝑟 1 − 1 𝑟 2 ≡ 1 𝑓
21
Bildkonstruktion dünne Sammellinse
Achsenparalleler Strahl: Nach Linse durch Brennpunkt Brennpunktstrahl: Nach Linse achsenparallel Mittelpunktstrahl: Geradlinig, da beide Linsenoberflächen parallel 𝑚≡ 𝐵 𝐺 =− 𝑏 𝑔 Dünne Linse: Versatz des Mittelpunktstrahles vernachlässigbar Brechkraft: D=1/f in Dioptrie 1 dpt=1 1/m
22
Bildkonstruktion dünne Zerstreuungslinse
V19/5104 Bilderzeugung Experimente: V19/5101 Paralleles Strahlenbündel V19/5102 Zerstreuungslinse Virtuelles Bild Negative Brennweite Gleiche Orientierung von Bild und Gegenstand 1 𝑔 + 1 𝑏 = 1 𝑓 𝑚 =− 𝑏 𝑔
23
Sammel- und Zerstreuungslinsen
24
Auge als Sammellinse 1 𝑔 + 1 𝑏 = 1 𝑓 Pupille = Blende Netzhaut= Sensor
Ziliarmuskel ändert Radius der Linse = BrennweiteScharfstellen
25
Weit- und Kurzsichtigkeit
weitsichtig kurzsichtig (Alternative: längere Arme, dichter herangehen)
26
Vergrößerung beim Auge
Vergrößerung einer Linse (unabhängig vom Beobachterabstand!): 𝑚≡ 𝐵 𝐺 𝑚≡ 𝜀 𝜖 0 Vergrößerung des Auges: im Vergleich zum Sehwinkel 0 bei 25 cm Auflösung des Auges: 1 Bogenminute
27
Vergrößerung einer Lupe
𝑚≡ 𝑆𝑒ℎ𝑤𝑖𝑛𝑘𝑒𝑙 𝑚𝑖𝑡 𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 𝑆𝑒ℎ𝑤𝑖𝑛𝑘𝑒𝑙 𝑜ℎ𝑛𝑒 𝐼𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡 = 𝜖 𝜀 0 𝜖 = 𝐺 𝑓 mit Lupe: 𝑚= 𝑆 0 𝑓 ≈20..30 (Wenn man das Auge akkomodiert, gewinnt man noch etwas) 𝜖 0 = 𝐺 𝑆 0 ohne Lupe:
28
Vergrößerung eines Mikroskops
𝑚 𝑂𝑏 = 𝐵 𝐺 =− 𝑙 𝑓 𝑂𝑏 𝑚 𝑂𝑘 = 𝑆 0 𝑓 𝑂𝑘 𝑀= 𝑚 𝑂𝑏 𝑚 𝑂𝑘 =− 𝑙 𝑆 0 𝑓 𝑂𝑏 𝑓 𝑂𝑘 Für maximale Vergrößerung: fOb 0, wird aber lichtschwach
29
Astronomisches (Kepler) Fernrohr
Gegenstände im Unendlichen werden in der Brennebene abgebildet 𝜀 𝑂𝑏 =− 𝐵 𝑓 𝑂𝑏 𝜀 𝑂𝑘 = 𝐵 𝑓 𝑂𝑘 𝑀= 𝜀 𝑂𝑘 𝜀 𝑂𝑏 =− 𝑓 𝑂𝑏 𝑓 𝑂𝑘 Vergrößerung eines Fernrohrs: Für maximale Vergrößerung: fOb ∞ und fOk 0, wird aber schwer
30
Terrestrisches (Galilei) Fernrohr
Zerstreuungslinse als Okular: Positive Vergrößerung: Bild steht aufrecht V19/6501 Kepler Fernrohr V19/6303 Galileo Fernrohr Experimente: Alternative: Prisma als Spiegel
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.