WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R 1.007 Vorlesung #7 SQL (Teil 4)

Slides:



Advertisements
Ähnliche Präsentationen
Sicherheitsaspekte Sicherheit im DBMS
Advertisements

Datenintegrität Einschränkung der möglichen Datenbankzustände und -übergänge auf die in der Realität möglichen Formulierung von Integritätsbedingungen.
Datenintegrität Integitätsbedingungen Schlüssel
© A. Kemper / A. Eickler1 Kapitel 5: Datenintegrität Integitätsbedingungen Schlüssel Beziehungskardinalitäten Attributdomänen Inklusion bei Generalisierung.
Systemüberblick Beispiele: Microsoft Access Oracle Ingres Informix
Datenintegrität, Views und Zugriffsrechte
Datenintegrität, Views und Zugriffsrechte
Grundlagen Datenbanken
SQL als Abfragesprache
SQL als Abfragesprache
Datensicherheit in DBMS
IS: Datenbanken, © Till Hänisch 2000 CREATE TABLE Syntax: CREATE TABLE name ( coldef [, coldef] [, tableconstraints] ) coldef := name type [länge], [[NOT]NULL],
Datenintegrität Referentielle Integrität create table
1 Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines Schlüssels 1:N - Beziehung Angabe.
1 Kapitel 8: Datenintegrität. 2 Datenintegrität Statische Bedingung (jeder Zustand) Dynamische Bedingung (bei Zustandsänderung) Bisher: Definition eines.
Kapitel 9: Integritätssicherung
3.5.2 Fremdschlüssel/ Referentielle Integrität (6/9)
3.5.2 Fremdschlüssel/ Referentielle Integrität (1/9)
2.2 Definition eines Datenbankschemas (SQL-DDL)
Übung 1: SQL Übungen finden bei Bedarf anstelle der Vorlesungen statt
Datenbankentwicklung IV-LK
Relationale Datenbanken III
Datenintegrität Integitätsbedingungen Schlüssel
WS 2009/10 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #6 SQL (Teil 3)
WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #4 SQL (Teil 1)
WS 2012/13 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #6 SQL (Teil 3)
WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #6 SQL (Teil 3)
WS 2007/08 Datenbanksysteme Mi 17:00 – 18:30 R Vorlesung #10 Physische Datenorganisation.
WS 2011/12 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #6 SQL (Teil 3)
SS 2004 Datenbanken 4W Mi 13:30 – 15:00 G 2.30 Vorlesung #7 SQL (Teil 2)
WS 2011/12 Datenbanksysteme Mi 15:15 – 16:45 R Vorlesung #9 Physische Datenorganisation.
Vorlesung #4 Überführung des ER-Modells in das relationale Modell
Vorlesung #4 SQL (Teil 1).
SS 2004 Datenbanken 4W Mi 13:30 – 15:00 G 2.30 Vorlesung #8 SQL (Teil 3)
SS 2004 Datenbanken 4W Mi 13:30 – 15:00 G 2.30 Vorlesung #5 Relationale Anfragesprachen.
WS 2011/12 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #3 Das relationale Modell (Teil 2)
SS 2004 Datenbanken 4W Mi 13:30 – 15:00 G 2.30 Vorlesung #6 SQL (Teil 1)
WS 2012/13 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #8 SQL (Teil 5)
WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #2 Das relationale Modell (Teil 1)
WS 2013/14 Datenbanksysteme D0 15:15 – 16:45 R Vorlesung #5 SQL (Teil 2)
SS 2004 Datenbanken 4W Mi 13:30 – 15:00 G 2.30 Vorlesung #9 SQL (Teil 4)
WS 2013/14 Datenbanksysteme Fr 17:00 – 18:30 R Vorlesung #3 Das relationale Modell (Teil 2)
WS 2007/08 Datenbanksysteme Mi 17:00 – 18:30 R Vorlesung #5 SQL (Teil 2)
WS 2012/13 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #7 SQL (Teil 4)
WS 2009/10 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #7 SQL (Teil 4)
WS 2007/08 Datenbanksysteme Mi 17:00 – 18:30 R Vorlesung #8 Wiederholung: Referentielle Integrität/ Embedded SQL.
WS 2011/12 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #4 SQL (Teil 1)
Datenbanksysteme für hörer anderer Fachrichtungen
WS 2011/12 Datenbanksysteme Fr 15:15 – 16:45 R Vorlesung #5 SQL (Teil 2)
Vorlesung #10 Physische Datenorganisation
Relationales Datenmodell und DDL
Structured Query Language
8 Erzeugen und Verwalten von Tabellen Ziele Kennenlernen der wichtigsten Datenbankobjekte Anlegen von Tabellen Datentypen zur Definition von Spalten.
Vorlesung #5 SQL (Teil 2).
Integritätsbedingungen (Constraints)
1 Referenzielle Konsistenz (1) Vorgehensweise: Klausel references mit nachfolgender Spezikation eines Attributs einer anderen Tabelle identifiziert ein.
WS 2014/15 Datenbanksysteme D0 15:15 – 16:45 R Vorlesung #6 SQL (Teil 3)
WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #8 SQL (Teil 5)
WS 2014/15 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #9 SQL Zusammenfassung.
Datenbanken erstellen mit PostgreSQL
Datenbanken abfragen mit SQL
SQL Lutz KleinostendarpJOBELMANN-SCHULE Datendefinition Die Organisation einer Datenbank basiert auf einer Anzahl verschiedener Objekte. Diese können physikalischer.
SQL Structured Query Language Enzio Thiem. INHALT CREATE TABLE Anweisung Gängige Datentypen Beispiel CREATE TABLE Beispiel CREATE TABLE - erweitert Beispiel.
SQL Basics Schulung –
Sprachumfang von SQL Vier Kategorien DDL (Data Definition Language)
Vorlesung #4 Relationales Kalkül und SQL (Teil 1)
Vorlesung #5 SQL (Teil 2).
Vorlesung #6 SQL (Teil 3).
Vorlesung #7 SQL (Teil 4).
 Präsentation transkript:

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #7 SQL (Teil 4)

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Fahrplan Wiederholung Relationale Division (doppelter NOT EXISTS, HAVING (count) =...) Rekursion / hierarchische Abfragen Views (Sichten) - gespeicherte Abfragen Gewährleistung der logischen Datenunabhängigkeit Modellierung von Generalisierung UPDATE-fähige Sichten Constraints NOT NULL, CHECK, UNIQUE, PRIMARY KEY Referentielle Integriät (FOREIGN KEY) Ausblick Vorlesung #8, SQL Teil 5 © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (VIEWs) Aussenstehende – d.h. Datenbank-Benutzer wollen wissen, welcher Professor welche Vorlesungen liest? Benutzer wissen nichts von Schlüsseln (künstliche IDs), JOINs, verschiedenen Tabellen usw. CREATE VIEW ProfVorlesung AS SELECT Name, Titel FROM Professoren, Vorlesungen WHERE PersNr = gelesenVon; © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (2) (+) Wir zeigen den Benutzern genau das, was Sie sehen wollen Benutzerfreundlichkeit (+) Wir können die Informationen verbergen, die Benutzer nicht sehen wollen oder nicht sehen dürfen Datenschutz und Sicherheit (+) Wir können darunterliegende Basis-Tabellen verändern. Solange die Sichten angepasst werden, merken die Benutzer nichts logische Datenunabhängigkeit NAMETITEL KantGrundzuege... SELECT * FROM ProfVorlesung; © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (3) - logische Datenunabhängigkeit Relation 1Relation 2Relation 3 Benutzer 2Benutzer 1 Sicht 1Sicht 2Sicht 3 Physische Datenunabhängigkeit Logische Datenunabhängigkeit © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (4) – Beispiel logische Datenunabhängigkeit Internet-BesucherStudenten ProfVerlesung Dozenten lesen Kurse CREATE VIEW ProfVorlesung AS SELECT Name, Titel AS SELECT Name, Titel FROM Dozenten FROM Dozenten NATURAL JOIN lesen NATURAL JOIN lesen NATURAL JOIN Kurse; NATURAL JOIN Kurse; CREATE VIEW ProfVorlesung AS SELECT Name, Titel FROM Professoren, Vorlesungen WHERE PersNr = gelesenVon; Professoren Vorlesungen © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (5) – UPDATE-Fähigkeit Sichten sind immer veränderbar im Bezug auf DDL- Operation, hier ist aber DML gemeint! Sichten sind i.a. nicht UPDATE fähig, da das DBMS bei einer UPDATE, DELETE oder INSERT Operation auf einer Sicht nicht weiß, welche Basis-Tabelle wie zu verändern ist: wenn Sichten Duplikatelimierung und Aggregatfunktionen (DISTINCT, GROUP BY usw.) beinhalten wenn der Schlüssel der zugrundeliegenden Tabelle(n) nicht enthalten ist Wenn durch das INSERT, UPDATE oder DELETE Statement mehr als eine Tabelle referenziert wird © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Sichten (6) – UPDATE-Fähigkeit Beispiel einer nicht UPDATABLE View: create view WieHartAlsPrüfer (PersNr, Durchschnittsnote) as select PersNr, avg(Note) from prüfen group by PersNr; alle Sichten theoretisch änderbare Sichten in SQL änderbare Sichten © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Datenintegrität Integitätsbedingungen bis jetzt Schlüssel Eindeutigkeit Beziehungskardinalitäten (min,max Notation) Attributdomänen (NUMBER, CHAR, DATE) Inklusion bei Generalisierung (Untertyp immer im Obertyp enthalten) statische Integritätsbedingungen Bedingungen an den Zustand der Datenbasis Mit Datenbank-CONSTRAINTs realisiert dynamische Integritätsbedingungen Bedingungen an Zustandsübergänge Mit Datenbank-TRIGGERn realisiert * engl. CONSTRAINT = Bedingung, TRIGGER = Auslöser © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Statische CONSTRAINTs NOT NULL UNIQUE CHECK (Regel) Vorisicht: CHECK ist auch dann erfüllt, wenn der logische Vergleich einen NULL-Wert zurückliefert CREATE TABLE MyProfessoren ( PersNr NUMBER(5,0) UNIQUE, Name VARCHAR2(30) NOT NULL, Rang CHAR(2) CHECK (Rang IN ('C1', 'C2', 'C3','C4') ) ); © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Statische CONSTRAINTs (2) Man kann CONSTRAINTs nachträglich definieren ALTER TABLE myprofessoren ADD CHECK (Rang IN ('C1', 'C2', 'C3','C4') ); löschen, verändern, suchen, auflisten, ein- und ausschalten, validieren (siehe SQL-Manual des jeweiligen DBMS, hier Oracle Syntax für das Löschen) ALTER TABLE myprofessoren DROP CONSTRAINT sys_c003798; Dynamische Constraints mit Triggern nächstes Mal (Vorlesung #9) © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Referentielle Integrität Sorgt dafür, dass die Beziehung zwischen dem Primärschlüssel und dem Fremdschlüssel bestehen bleibt (dass die Referenz - der Verweis - erhalten bleibt) Fremdschlüssel müssen auf existierende Tupel verweisen oder einen Nullwert enthalten Beispiel gelesenVon PersNr CREATE TABLE Professoren (PersNr INTEGER PRIMARY KEY...) (CREATE TABLE Vorlesungen gelesenVon INTEGER REFERENCES Professoren...) © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Referentielle Integrität (2) Schlüsselkandidat UNIQUE CONSTRAINT Primärschlüssel PRIMARY KEY Fremdschlüssel FOREIGN KEY (auch implizit durch das Wort REFERENCES in Tabellen- Definition) FOREIGN KEYs können auch NULL Werte enthalten UNIQUE FOREIGN KEY modelliert 1:1 Beziehung © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Einhaltung referentieller Integrität Änderung von referenzierten Daten Default: Zurückweisen der Änderungsoperation Propagieren der Änderungen: cascade Verweise auf Nullwert setzen: set null Dies ergibt folgende Möglichkeiten bei der Festlegung des CONSTRAINTs in der Tabellen- Definition ON [ UPDATE | DELETE ] [ SET NULL | CASCADE ] Kaskadierendes Löschen mit Vorsicht geniessen! Beispiel: wenn in Vorlesungen und hören kaskadierend gelöscht wird, verliert man die beim Löschen eines Professors die Information welcher Student was gehört hat. © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R UNI Schema mit Constraints Kemper Seite 157 URL: siehe Übungsblätter #4 und #5 © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Fazit und Ausblick Fazit SQL Teil 1 bis 4 SQL Teil 1 – Datentypen, einfache Abfragen SQL Teil 2 – komplexe Abfragen, Unterabfragen SQL Teil 3 – quantifizierte Abfragen, Rekursion SQL Teil 4 – Views, Constraints Ausblick SQL Teil 5 Trigger, prozedurale Erweiterungen (PL/SQL) Einbettung in C,C++,Java SQL Schnittstellen JDBC,ODBC Query By Example QBE © Bojan Milijaš,

WS 2013/14 Datenbanksysteme Do 17:00 – 18:30 R Vorlesung #7 Ende