TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 19. Mai 2006

Slides:



Advertisements
Ähnliche Präsentationen
Michael Hammer: Das Standardmodell der Teilchenphysik
Advertisements

Seminar im Bereich der Kern- und Teilchenphysik
desy.de QCD bei HERA und LHC Peter Schleper Universität Hamburg desy.de
Die magneto-mechanische Anomalie des Myons
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 2. Mai 2006
Suche nach anomaler Produktion von
Physik jenseits des Standardmodells
Die Entdeckung des Top Quarks
Michel-Parameter im µ-Zerfall
Kilian Leßmeier Universität Bielefeld
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap. 3: Jets Jet-Definition Jet-Rekonstruktion Di-Jet Ereignisse Multi-Jet Ereignisse.
Kap. 1: Einführung Übersicht Hadron-Kollider
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 4: Physik mit schweren Quarks Grosse Wirkungsquerschnitte Hadron-Massen und.
Kap. 2: Bestandteile der hadronischen Wechselwirkung
Martin zur Nedden, HU Berlin 1 Physik an Hadron-Collidern, WS 2006/2007 Kap 1, Intermezzo: Beispiele von hadronischen Kollisions- Experimenten D0 am Tevatron.
Die Nukleon-Nukleon Wechselwirkung
Die Struktur des Pomerons
Frage: was sind die wesentlichen Aussagen der QCD und wie werden sie getestet? Antworten: a) die starke Wechselwirkung wird durch den Austausch von Gluonen.
Teilchenphysik: Verständnisfragen
Hanna Kluge CMS DESY in Zeuthen Was machen Physikerinnen und Physiker mit einer Rechnerfarm ? Zeuthen, den
Quark- und Gluonstruktur von Hadronen
G. Flügge, T. Hebbeker, K.Hoepfner, J. Mnich, W. Wallraff
Moderne Methoden der Teilchen- und Astroteilchenphysik
Beauty-Produktion in Tief- Inelastischen Streuprozessen bei Z EUS Benjamin Kahle, Vincenzo Chiochia und Katarzyna Wichmann DPG-Frühjahrstagung Mainz 2004.
Jenseits der Antimaterie
Ein- und Ausblicke in die harte Diffraktion aus ep und pp Streuungen Das Phänomen Diffraktion Regge und QCD QCD Faktorisierung Diffraktion bei HERA Strukturfunktion,
Physik bei hohem Q2 und die Suche nach neuen Phänomenen bei HERA
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Peter Schleper Thomas Schörner-Sadenius Universität Hamburg, IExpPh Wintersemester 2005/06.
Robert Klanner Thomas Schörner-Sadenius
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 2. Juni 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 23. Mai 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 21. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 4. April 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 7. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 13. Juni 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 16. Mai 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 25. April 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 30. Mai 2006
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 18. April 2006
Das ZEUS-Experiment am HERA-Beschleuniger Das ZEUS-Experiment Elektron-Proton-Streuung bei hohen Energien ZEUS-KOLLABORATION ca. 350 Physikern von 57 Instituten.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 9. Mai 2006
Das Quark-Gluon-Plasma
Physik bei HERA Die Experimente H1 und ZEUS
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 18. April 2006 Robert Klanner Universität Hamburg, IExpPh Sommersemester 2006.
Thomas Schörner-Sadenius, Georg Steinbrück (Peter Schleper)
Das ZEUS-Experiment am HERA-Beschleuniger Das ZEUS-Experiment Elektron-Proton-Streuung bei hohen Energien Die ZEUS-KOLLABORATION besteht derzeit aus ca.
Experimentelle Methoden der Teilchenphysik oder Rundgang durch das CMS-Experiment Thomas Schörner-Sadenius, Georg Steinbrück Wir beschäftigen uns in dieser.
QCD-TESTS AN BESCHLEUNIGERN
PHYSIK BEI HERA Der weltweit einzige ep-Collider
Kern- und Teilchenphysik 2
Seminarvortrag von Florian Senger
Das LHCb-Experiment am CERN The Large Hadron Collider beauty Experiment Outer Tracker Gruppe des Physikalischen Instituts Heidelberg Wechselwirkungen zwischen.
Das LHCb-Experiment am CERN The Large Hadron Collider beauty Experiment Outer Tracker Gruppe des Physikalischen Instituts Heidelberg Wechselwirkungen zwischen.
Suche nach dem Higgs-Boson des Standardmodells
Datenanalyse am LHC Nena Milenkovic
Programm – 09.50: Begrüßung und Umfrage – 11.30: Vorträge
Der Urknall und seine Teilchen
Günther Dissertori CERN , EP-Division Lehrer Seminar Februar 2000
DPG Frühjahrs-Tagung 2006 in München
Teil 7: Offene Fragen der Teilchenphysik
Hochenergiephysik bei HERA H1 und ZEUS Thomas Schörner-Sadenius Uni HH, 18. September 2003 Fortgeschrittenenpraktikum.
TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 5. Mai 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006.
Raimund Ströhmer, LMU München
Schwere Eichbosonen Seminarvortrag im Rahmen des F-Praktikums
Standardmodell. 224 Was wissen wir bisher? Nukleonen bestehen aus (3) spin ½ Teilchen mit relativ geringer Masse.
Das Standard Modell der Teilchenphysik Stand und offene Fragen P. Schmid Innsbrucker Vorbereitungstreffen für den CERN Besuch 16. Jänner 2006.
ATLAS-Masterclasses Einführung in die W-Pfad Messung
Standardmodell der Elementarteilchenphysik
QCD Johannes Haase.
 Präsentation transkript:

TEILCHENPHYSIK FÜR FORTGESCHRITTENE Vorlesung am 19. Mai 2006 Thomas Schörner-Sadenius Universität Hamburg, IExpPh Sommersemester 2006

5.4.1 nur teilweise ohne Diskussion von 5.4.2 behandelbar ! ÜBERBLICK Die quantenmechanische Beschreibung von Elektronen Feynman-Regeln und –Diagramme Lagrange-Formalismus und Eichprinzip QED Einschub: Beschleuniger und Experimente Starke Wechselwirkung und QCD 5.1 QED als Muster relativistischer Feldtheorien 5.2 QCD: die Theorie der starken Wechselwirkung (Farbe, SU(3)-Eichinvarianz, Gell-Mann-Matrizen, Masselosigkeit der Gluonen, Lagrange-Dichte der QCD, Renormierung, “running coupling”, asymptotische Freiheit und Confinement 5.3 Nicht-perturbative QCD: Jets, Fragmentation, Entdeckung/Messung des Gluonspins 5.4 Perturbative QCD: 5.4.0 S in e+e- (PETRA und LEP) 5.4.1 tiefunelastische Streuung (DIS) und die Struktur des Protons 5.4.2 Messung der starken Kopplungskonstante in DIS mit Jets 5.4.3 Präzisionstests der QCD 5.4.4 Universalität der Partonverteilungen 5.5 Hadronen in der QCD: Aufbau aus Quarks, Zerfälle, Quarkonia, das Potential der QCD und Confinement Einschub: Wie sieht eine QCD-Analyse bei ZEUS aus? 5.4.1 nur teilweise ohne Diskussion von 5.4.2 behandelbar ! TSS/RK SS06: Teilchenphysik II

WIEDERHOLUNG Paradigmatische Bestimmung der starken Kopplung in der Elektron-Positron-Vernichtung in 4 Jets: Tiefunelastische Streeung: Aus der Hadron-spektroskopie motivierte Annahmen: Es gibt drei Konstituenten mit Spin-1/2 (Valenzquarks u,u,d). Ladungen: Qu=2/3, Qd=-1/3. - Diese tragen Bruchteile xi, i=1,2,3, 0<xi<1, des Protonimpulses. Modifikation des e-WQS: Mit Definition der kinematischen Variablen x, y, Q2 und der Strukturfunktionen F2 etc.: F2 unabhängig von Q2 – Skalenverhalten! TSS/RK SS06: Teilchenphysik II

WIEDERHOLUNG Durch Gluonen und Quantenfluktuationen kommt es zu Skalenverletzungen. Grund: Bei verändertem Auflösungsvermögen Q2 sieht man mehr/weniger Strukturen auf kleinen Skalen. Aktuelle präzise Messungen von F2 von HERA sehr gut mit QCD-Theorie verträglich! Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.1 SKALENVERLETZUNG UND QCD Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.1 F2: VORGEHEN; SKALENVERLETZUNGEN – Unterteile x-Q2-Ebene in “vernünftige” Bins: – Merke, dass bei kleinen y: – Also: Zur Kinematik der ep-Streeung … … kriegen Sie eine kleine Aufgabe … Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung e(k’) Weitere Partonen (q) e(k) q(xP) gestreutes Parton Zählen! x,Q2 gemessen! TSS/RK SS06: Teilchenphysik II

5.4.1 F2: SKALENVERLETZUNGEN Verhalten von F2 mit Q2 (halb)quantitativ: Betrachte Änderung der Dichte von Quarks q(x,Q2) mit Impulsbruchteil x bei kleiner Änderung von Q2Q2+dQ2. (z>x)). Man sieht etwas mehr von Prozessen wie z kann Werte zwischen x und 1 haben: Damit kann man zeigen, dass: – Unter der Annahme von nur u,d-Quarks (ist einfacher) und mit folgt für F2: Man kann zwei Grenzfälle isolieren: – große x: Gluondichte g(z) für z>x verschwindet  – kleine x: Gluondichte dominiert das Proton  Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung Kopplung Splitting-Funktionen (pQCD): W’keit, dass Parton mit z anderes Parton mit x abstrahlt. Änderung von u bei x proportional zur Dichte der Quarks/Gluonen, die abstrahlen können. TSS/RK SS06: Teilchenphysik II

5.4.1 PARTONVERTEILUNGEN AUS F2 Typische Parametrisierungen der Abhängigkeit von F2 von den Partonverteilungen fi(x,Q2): Durch Variation der Parameter kann die Vorhersage von F2 an die Daten angepasst werden. Der optimale Parametersatz liefert dann die Partonverteilungen (PDFs) des Protons. (Anmerkung: Der theoretische Ansatz verlangt, dass die PDFs bei einer kleinen Startskala Q02 angenommen und dann mithilfe der Evolutionsgleichungen zu hohen Skalen Q2>Q02 entwickelt werden.) Probleme: – Anzahl der Parameter gross! – Auswahl der Datensätze (fixed-target, Neutrino, Myon, HERA, Drell-Yan etc.). – Abschätzung der Unsicherheiten. – … Ergebnis (Beispiel): – Unterschiede durch verschiedene Datensätze und verschiedene Parametrisierungen. – Verschiedene Gruppen: CTEQ, MRST, Alekhin, H1, ZEUS – Unsicherheiten von wenigen Prozent (u bei moderaten x) bis 100% (g bei hohen x)  Problem für LHC! Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.1 PARTONVERTEILUNGEN AUS F2 “Ehrlichere” Darstellung: Man beachte das starke Ansteigen des Sees und der Gluonen zu kleinen x hin! Zur Unsicherheit der Gluondichte: Relevanz für z.B. Higgs-Produktion bei LHC? Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.1 S IN SKALENVERLETZUNGEN VON F2 Erinnerung: Strukturfunktion F2: Wiederholung Theorie: Bei bekannter Strukturfunktion F2 (und ihrer Ableitung), bekannter Gluondichte g und bekannten Splitting-Funktionen P kann S(Q2) extrahiert werden (beachte: Q2 ist einzige harte Skala im Prozess). Ergibt einen sehr genauen Wert für die starke Kopplung! Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.1 QPM UND SUMMENREGELN Umbenennung: u(x)dx, d(x)dx etc. ist Wahrscheinlichkeit, ein u,d-Quark mit Impulsanteil x zu finden. Wir unterscheiden Valenzquarks uud und Seequarks aus Fluktuationen: uu, dd, ss, … Damit und den als bekannt angenommenen Quarkladungen kann man die Strukturfunktion des Protons F2ep schreiben als: Annahme von Isospin-Invarianz ergibt beim Übergang zum Neutron: Also: Integration über x ergibt einige “Summenregeln”: Addition/Subtraktion dieser beiden Gleichungen: Da das Proton die Strangeness 0 hat muss gelten: Interessant: Impulssummenregel: Laut QPM sollte  0 sein. Vernachlässigung von s: Experimentell: Wert des Integrals ca. 0.5! Den restlichen Impuls tragen die Gluonen! Da sie elektrisch neutral sind, tragen sie nicht zur EM-Struktur (also zu F2) bei. Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

(transversale) Jet- Energie ET,Jet 5.4.2 S AUS JETS IN DIS Wir betrachten folgende Pozesse in ep-Streuung … und die Korrekturen höherer Ordnungen: “Uninteressant” hingegen ist: Wirkungsquerschnitt: Reihenentwicklung in S: Vier wichtige Fragen: Was ist die relevante Skala  für S? Wie kann man die Prozesse der Ordnung S0 ausschliessen (wenn man will)? Was sind die Koeffizienten Cn (später)? Wie sehen solche Ereignisse im Detektor aus? Zu 1.) Relevante Skala: Wähle hohe Energieskala, bei der der harte Prozess abläuft. QCD-Compton Boson-Gluon-Fusion S NLO=niedrigste (nullte)+erste Ordnungen Beitrag n=0 liefert kein S. Experimentell: Breit-Bezugssystem! Koeffizienten Cn berechenbar (später) Reell, brauchen auch virtuelle (Schleifen-)Korrekturen … Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung Quark-Parton-Modell- (QPM)-Prozess Relevant für Struktur- funktionen. (transversale) Jet- Energie ET,Jet Q2 Möglichkeiten: Q2, ET2 Ambiguität – theo. Fehler! TSS/RK SS06: Teilchenphysik II

5.4.2 S AUS JETS IN DIS: ET, BREIT-SYSTEM Zu 2.) Warum betrachtet man bei Hadron-Collidern wie HERA oder Tevatron immer die transversale Energie ET? – Im Anfangszustand ist die Summe der Transversalenergien =0: – Nach der Wechselwirkung gibt es Impulse senkrecht zur z-Achse (z.B. gestreutes Elektron) – diese charakterisieren also die Wechselwirkung! – Aber man weiss nicht, welcher Bruchteil der (rein longitudinalen) Protonenergie in die Wechselwirkung floss (Quark-Bild!) – die Schwerpunktsenergie ist letztlich unbekannt! Noch zu 2.) Wie unterdrücke ich experimentell die Anteile der Ordnung S0? QPM-Ereignis im Labor-System:  das Quark (= der Jet) hat Transversalimpuls! Jetzt Lorentz-Boost so, dass Photon und Quark auf der z’-Achse liegen: Breit-Bezugssystem (“brickwall system”): QPM-Ereignisse geben KEINEN hadronischen (Jet)-Transversalimpuls relativ zu z’  ET-Cut selektiert also “QCD”- Ereignisse (QCDC, BGF), denn: +z Photon Quark  +z Elektron Proton +z Elektron Hadronisches System +z‘ Photon Quark  +z‘ Quark Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung +z‘ Photon Quark  Elektron Proton Quark 1 +z‘ Quark 2 TSS/RK SS06: Teilchenphysik II

5.4.2 S AUS JETS IN DIS: EREIGNISSE Zu 4.) Wie sehen solche Ereignisse im Detektor aus? QPM Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.2 S AUS JETS IN DIS: EREIGNISSE Zu 4.) Wie sehen solche Ereignisse im Detektor aus? ?????? Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

PDF fi/p, nicht-perturbativ 5.4.2 S AUS JETS IN DIS Zu 3.) Was sind die Koeffizienten Cn? Faltung der “weichen” Anteile (PDF) und der harten (ME)  Prinzip der Faktorisierung! Salopp gesagt: Man kann beweisen (Faktorisierungstheoreme), dass man nur ME berechnen muss (leicht in pQCD, hängt von einlaufendem Impuls x ab) PDFs kennen muss (z.B. aus F2) und dann beides “zusammenkleben” kann, um zum WQS zu kommen. Die Faktorisierungseigenschaft ist sehr fundamental und keineswegs selbstverständlich! Partonverteilungen Faltung Matrixelement (WQS) der Parton- Parton-Steuung ME, hohe Skalen (Q2, ET) Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung PDF fi/p, nicht-perturbativ TSS/RK SS06: Teilchenphysik II

5.4.2 S AUS JETS IN DIS: EXTRAKTION Wie wird nun die starke Kopplung gemessen? Einfachste Methode: – Berechne den Wirkungsquerschnitt i für jede Observable i als Funktion von S(MZ). – Interpoliere die quadratische Funktion in S(MZ): – Bestimme das zum gemessenen idata gehörende S(MZ). – Kombiniere ggf. verschiedene S(MZ)-Werte. – Oder evolviere zur “richtigen” Skala 2. Ergebnisse solcher Analysen bei HERA: Detektor: Gemessener Wirkungsquerschnitt für Produktion von 1+ Jets in einem bestimmten kinematischen Bereich. Daten verglichen mit QCD-Rechnung in nächstführender Ordnung, NLO. Unten: Verhältnis (Daten-NLO)/NLO Mass für Qualität der Beschreibung der Daten durch Theorie. +z‘ Quark 2 Quark 1 Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung +z‘ Jet 2 Jet 1 Jet 2 pT +z‘ Jet 1 TSS/RK SS06: Teilchenphysik II

5.4.2 S AUS JETS IN DIS: EXTRAKTION Resultierende S(MZ)-Werte und ihre Kombination: Evolviert zur Skala ET: Man sieht also: Die Werte verschiedener HERA-Messungen stimmen gut miteinander überein (Uffff!) Die Energieabhängigkeit wird gut von der Theorie (QCD in NLO) beschrieben: Führende Ordnung (LO) 0=11-2/3nf, 1=51-19/3nf (Renormierungsgruppengleichung) Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.2 S AT HERA Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.3 PRÄZISIONSTESTS DER QCD Die Struktur des Jet-Wirkungsquerschnitts (bei HERA): Der Wirkungsquerschnitt wird geschrieben/berechnet als Reihenentwicklung (bis nächstführende Ordnung) mit dem Parameter S. Die Koeffizienten sind Faltungen der PDFs mit den partonischen Wirkungsquerschnitten. Die Messung solcher Daten und der Vergleich mit der theoretischen Vorhersage erlaubt also folgende Tests: – Unterliegende Eichgruppe (ist es wirklich SU(3)C?) (Spins, Farbfaktoren – siehe Paper auf Webseite). – Starke Kopplung. – PDFs und ihre Universalität. – Faktorisierung. – Konzept der perturbativen QCD – Abhängigkeit vom Boson (neutral/geladen). – “Partondynamik im Proton” – Spin von Quarks und Gluonen H1-Ergebnisse zu 1/2/3-Jet-Wirkungsquerschnitten: Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.3 PRÄZISIONSTESTS: GLUON-SPIN Der Spin von Quarks und Gluonen wurde sowohl bei LEP als auch bei HERA in 2-Jet-Ereignissen gemessen. Idee: Der Spin des Propagators wirkt sich auf die Winkelverteilung der beiden Jets aus: Trennung der beiden Ereignisklassen über Variable x: Bruchteil der Photon-Energie, die an harter Streuung teilnimmt, aus Jets berechenbar. Ergebnis von ZEUS (analog z.B. von OPAL): Die beiden Beiträge zeigen deutlich verschiedenes Winkelverhalten und gute Beschreibung durch die Theorie. Quarks haben Spin ½, Gluonen Spin 1! Ein weiteres Feature der QCD bestätigt! Quark-Propagator mit Spin ½: (1-|cos*|)-1 Gluon-Propagator mit Spin 1: (1-|cos*|)-2 Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung TSS/RK SS06: Teilchenphysik II

5.4.4 UNIVERSALITÄT DER PDFS Charm-Strukturfunktion F2cc (parametrisiert den Anteil der Proton-Struktur aus c-Quarks). – Charm im Proton nur aus gcc-Fluktuationen.  F2cc sensitiv auf Gluondichte g(x,Q2). – Gluondichte aus PDF-Fits an F2. – Charm-Ereignisse aus D*-Analyse: D*-Massenpeak: F2cc-Beschreibung mit g(x,Q2) aus F2: c c Wichtig: M stellt letztendlich so etwas wie die Fourier-Trafo des Potentials dar! Dieser Effekt (Vakuumpolarisation) ist –27MHz von +1057MHz totalem Effekt. Messung K- + D0 s+ D* Das Gluon ist universell! TSS/RK SS06: Teilchenphysik II