Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27-Selbstanordnende lineare Listen) Prof. Th. Ottmann.

Slides:



Advertisements
Ähnliche Präsentationen
Christian Scheideler SS 2009
Advertisements

Eine dynamische Menge, die diese Operationen unterstützt,
Vorlesung Programmieren II
Prof. Dr. S. Albers Prof.Dr.Th Ottmann
Schnelle Matrizenoperationen von Christian Büttner
Datenstrukturen, Algorithmen und Programmierung 2 (DAP2)
Claudio Moraga; Gisbert Dittrich
Kapitel 6: Klassifizierung von Sortiertechniken
3. Kapitel: Komplexität und Komplexitätsklassen
<d,a,s, ,i,s,t, ,e,i,n,e, ,L,i,s,t,e>
Kapitel 3: Listen Lineare Liste: endliche Folge von Elementen eines Grundtyps (n>=0), leere Liste falls n=0 Listenelemente besitzen.
5. Sortier-Algorithmen Vorbemerkungen:
2. Kapitel: Komplexität und Komplexitätsklassen
Sortierverfahren Richard Göbel.
Sortierverfahren Richard Göbel.
Algorithmentheorie 04 –Hashing
WS Algorithmentheorie 05 - Treaps Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (23 – Sortieren vorsortierter Daten) Prof. Th. Ottmann.
Algorithmen und Datenstrukturen
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (08 - Einfache Sortierverfahren) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (13 – Offenes Hashing) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (10 - Suchverfahren) T. Lauer.
Prof. Dr. S. Albers Prof. Dr. Th. Ottmann
Halbzeit: Kurze Wiederholung
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (19 - Analyse natürlicher Bäume) Prof. Th. Ottmann.
Sortieren vorsortierter Daten
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (24 – Sortieren vorsortierter Daten) Prof. Th. Ottmann.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen Halbzeit: Was haben wir bisher gelernt? Prof. Th. Ottmann.
Algorithmen und Datenstrukturen
Vorlesung Informatik 3 Einführung in die Theoretische Informatik (05 – Reguläre Ausdrücke) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27 – Kürzeste Wege) Prof. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 4 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (17 – Bäume: Grundlagen und natürliche Suchbäume) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen 09 - Weitere Sortierverfahren Heapsort-Nachtrag Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 - Bäume: Durchlaufreihenfolgen, Analyse nat. Bäume) Prof. Th. Ottmann.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11-3 –Selbstanordnende lineare Listen) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11-1 –Selbstanordnende lineare Listen) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (15 Hashverfahren: Verkettung der Überläufer) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 – Dynamische Tabellen) Prof. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (14 Amortisierte worst-case-Analyse Beispiel: Bitwechselkosten eines Dualzählers) Prof. Th. Ottmann.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (17 – Fibonacci-Heaps – Analyse) Tobias Lauer.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (07 - Skiplisten) Prof. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 12 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Union-Find-Strukturen
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (03 – Verschiedene Algorithmen für dasselbe Problem) Prof. Dr. Th. Ottmann.
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (09 - Weitere Sortierverfahren) Prof. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Algorithmen und Datenstrukturen
Vorlesung Informatik 2 Algorithmen und Datenstrukturen (05 – Elementare Datenstrukturen) Prof. Th. Ottmann.
Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
EINI-I Einführung in die Informatik für Naturwissenschaftler und Ingenieure I Vorlesung 2 SWS WS 99/00 Gisbert Dittrich FBI Unido
Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Algorithmen und Komplexität Teil 1: Grundlegende.
Minimum Spanning Tree: MST
Effiziente Algorithmen
4 Sortierverfahren 4.1 Einführung 4.2 Naive Sortierverfahren
Splay Trees Von Projdakov Benjamin.
Einführung in die Programmierung
Effiziente Algorithmen
Effiziente Algorithmen Hartmut Klauck Universität Frankfurt SS
Effiziente Algorithmen
Grundlagen der Algorithmen und Datenstrukturen Kapitel
Algorithmen und Datenstrukturen
Suchen und Sortieren.
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen
Algorithmen und Datenstrukturen
 Präsentation transkript:

Vorlesung Informatik 2 Algorithmen und Datenstrukturen (27-Selbstanordnende lineare Listen) Prof. Th. Ottmann

Problemstellung Gegeben sei eine Menge von Objekten (Schlüsseln), auf die mit zeitlich veränderlichen unbekannten Häufigkeiten zugegriffen wird. Problem: Finde eine Speicherungsform, die die Zugriffskosten minimiert! Lösungsidee: Speichere Schlüssel in eine sich selbst anordnenden linearen Liste! (Sequentiell gespeichert)

Strategien für Selbstanordnung MF (Move to front): Mache aktuelles Element zum ersten Listenelement T (Transpose): Vertausche aktuelles Element mit seinem Vorgänger FC (Frequency count): Führe eine Zugriffsstatistik mit und sortiere nach jedem Zugriff neu!

Beispiel für Anwendung von MF (1) Gegeben Liste L = < 1, 2, 3, 4, 5, 6, 7> Zugriffskosten für Element an Position i seien i. Zugriffsfolge s: 1, 2, ..., 7, 1, 2, ..., 7, ... ..., 1, 2, ..., 7 Kosten der Zugriffsfolge s: 10 mal

Beispiel für Anwendung von MF (2) Gegeben Liste L = < 1, 2, 3, 4, 5, 6, 7> Zugriffskosten für Element an Position i seien i. Zugriffsfolge s‘: 1, ..., 1, 2, ..., 2, ... ..., 7, ..., 7 Kosten der Zugriffsfolge s‘: 10 mal 10 mal 10 mal

Beispiel für Anwendung von MF (3) Gegeben Liste L = < 1, 2, 3, 4, 5, 6, 7> Zugriffskosten für Element an Position i seien i. 10 maliger Zugriff auf jedes der Elemente 1, ..., 7 (in beliebiger Reihenfolge) Kosten bei statischer Anordnung: Ergebnis: MF kann besser sein, als ein (jede) statische Anordnung, besonders, wenn die Zugriffe gehäuft auftreten

Beobachtungen MF-Regel ist „radikal“, aber (vielleicht) nicht schlecht! T-Regel ist „vorsichtiger“, aber: Für L = <1, 2, ..., N-1, N> liefert die Zugriffsfolge N, N-1, N, N-1, ... die durchschnittlichen Zugriffskosten N. FC-Regel benötigt zusätzlichen, prinzipiell nicht beschränkten Speicherplatz Experimentelle Resultate zeigen: T schlechter als FC, MF und FC ungefähr gleich gut MF hat Vorteile Analyse: Mit Hilfe der amortisierten worst-case-Analyse

Analyse der MF-Regel MF (Move to front): Mache aktuelles Element zum ersten Listenelement. Ziel: Vergleich von MF mit beliebiger Strategie A zur Selbstanordnung. Für eine Folge s = s1, s2, ..., sm von m Zugriffsoperationen und für eine Strategie A zur Selbstanordnung bezeichne: CA(s) = Gesamtkosten (gesamte Zugriffskosten) zur Durchführung aller m Operationen von s gemäß Strategie A XA(s) = # kostenpflichtiger Vertauschungen (nach hinten) FA(s) = # kostenfreier Vertauschungen (nach vorn) Satz: Für jede Strategie A zur Selbstanordnung und jede Folge s vom m Zugriffs-Operationen gilt: CMF(s) <= 2 CA(s) + XA(s) – FA(s) - m

Analyse der Zugriffsregeln Kostenmodell: Zugriff auf Element an Position i verursacht Kosten i

Amortisierte Worst-Case-Analyse Unter den amortisierten worst-case Kosten einer Folge o1, ..., on von Operationen, die auf einer gegebenen Struktur ausgeführt werden, versteht man die durchschnittlichen Kosten pro Operation für eine schlechtest mögliche Wahl der Folge o1, ..., on . Genauer als simple, oft zu pessimistische worst-case-Analyse Mögliche Vorgehensweisen bei der amortisierten worst-case-Analyse: Gesamtkosten der Operationsfolge berechnen und Durchschnitt bilden (Aggregat Methode) Bankkonto Paradigma: Bezahle für die „billigen“ Operationen (freiwillig) etwas mehr und bezahle die teueren von den Ersparnissen Potentialmethode

Potentialmethode Sei F: D  IR, D Menge der Datenstrukturzustände Sei Fi das „Potential“ der Datenstruktur nach der i-ten Zugriffs Operation. ti = wirkliche Kosten der i-ten Operation Definiere die amortisierten Kosten ai der i-ten Zugriffs Operation durch: ai =

Analyse mit Potentialfunktion Betrachte die Wirkungen der Strategien MF und A bei Ausführung von s1, s2, ... für eine Ausgangsfolge L, und ordne jedem nach Ausführung der ersten l Operationen erreichten Zustand ein Potential Fl zu.

Balance bal(L1, L2) Definiere die Balance bal(L1, L2) zweier Listen L1 und L2, die dieselben Elemente in ggfs. unterschiedlicher Reihenfolge enthalten, als die Anzahl der Inversionen von Elementen in L1 bzgl. L2.

Beispiel für die Berechnung der Balance L1 = <3, 2, 1, 4, 6, 7, 5> L2 = <2, 1, 3, 6, 4, 7, 5>

Normierung der Balance-Berechnung Zur Berechnung der Balance bal(L1, L2) für zwei Listen L1 und L2 von n Zahlen kann man o.E. annehmen, dass L1 die Liste <1, 2, 3. ..., n> ist.

Definition der Potentialfunktion Das einem Paar von Listen, die nach der l-ten Operation mit Strategie MF und A entstehen, zugeordnete Potential Fl ist:

Wirkung einer Zugriffsoperation, MF LA LMF

Wirkung einer Zugriffsoperation, A LA LMF

Berechnung der Potentialänderung