Einführung in die Ökologie SS 2003

Slides:



Advertisements
Ähnliche Präsentationen
ATROPHIE Die sogenannte Atrophie zählt zu den Anpassungsreaktionen unseres Organismus. Anpassungsreaktionen beschreiben die Reaktion des Körpers auf Umweltveränderungen,
Advertisements

Mittel gegen globale Erwärmung???
Symbiose Mutualismus: Fakultatives Zusammenleben zum beiderseitigen Vorteil Wirt-Gast-Beziehung Kooperation: etwa heterospezifische Tierherden Eusymbiose:
GMP und HACCP in Schulrestaurants
Von Andrea Cano Molina & Irene Villafañe Sanz Klasse 8b 1.
Projektumfeld Gesellschaftliche Strömungen Strukturen/ Gliederung
Teil Geobotanik /Pflanzenökologie
Ökologische Folgen nicht angepasster Landnutzung
WAS WILL WISSENSCHAFT? - Sagen: Was WIE ist
Übersicht Einführung (cb, mh)
Modellbildung in der Geoökologie (G5, 103) SS 2004
Ernst Mayr *05. Juli 1904, † 03. Februar 2005
Aufgabenstellung: Grunderhebung der MO-Struktur (direkte Zellzahlbestimmung; SSCP-Fingerprinting von amplifizierter 16S rDNS und rRNS) x Zeitliche.
Biodiversitätshotspots
ÖKO-SYSTEM : WALD.
Artenvielfalt Seba Esma. Definition Artenvielfalt ist ein Maß für die Vielfalt der biologischen Arten innerhalb eines Lebensraumes oder geographischen.
EINIGE FORMEN DER HETEROTROPHEN ERNÄHRUNG Zersetzer SAPROPHYTEN Schmarotzen in lebenden Organismen PARASITEN Nehmen einen Teil der benötigten Stoffe aus.
Wiederholung: Einfache Regressionsgleichung
Messen im Labor Einführung Schwefel Phosphor Stickstoff Kohlenstoff
Latosole Rotbraune bis rotgelbe tropische Bodenbildung mit lockerem Gefüge; enthält wenig Kieselsäure, hat aber hohen Aluminium- und Eisenhydroxidgehalt;
Baumgartner Silvia Langmann Gernot Lederer Manuela
Zecken Klein und gemein.
DISPARITÄTEN Disparität = räumliche Ungleichheit innerhalb einer Volkswirtschaft, „unausgeglichene Raumstruktur“ Ebenen: ökonomisch, sozial, kulturell,
SPP 1090 Kohlenstoff- und Stickstoff-Gehalte des Bodens als limitierende Faktoren für Octolasion tyraeum Technische Universität Darmstadt Sven Marhan1&
POCKET TEACHER Biologie
EINIGE FORMEN DER HETEROTROPHEN ERNÄHRUNG
K. Meusburger & C. Alewel finanziert vom BAfU
Ausgleichungsrechnung II
Nahrungsketten Was für Aufgaben haben die Produzenten und Konsumenten in der Nahrungskette und was geschieht, wenn der Kreislauf durch den Menschen.
Gesundheitsprobleme bei Neuweltkameliden
Ratschläge für Kinder und Eltern
Bestäubung und Befruchtung
Intelligent Design und Darwinismus
3. Wechselwirkungen zwischen verschiedenen Arten
G2 – Ökosysteme (WP-HL).
Ökologische Rahmenbedingungen für die Biomassenutzung Dr. Anton Hofreiter 8. Mai 2007.
Bedeutung der Gentechnik in der Landwirtschaft
Populationsdynamik Wildbestände und ihre Zusammensetzung
Nahrungsketten Was für Aufgaben haben die Produzenten und Konsumenten in der Nahrungskette und was geschieht, wenn der Kreislauf durch den Menschen gestört.
VS.. Eigenschaften von Lebensmitteln und die darin enthaltenden Kohlenhydrate.
EINIGE FORMEN DER HETEROTROPHEN ERNÄHRUNG
Berechenbares Chaos - unvorhersehbare Wirklichkeit
Klimafaktoren biotische Faktoren abiotische Faktoren
Projekt PLANSCH.
Der Tropische Regenwald
Naturschutz Ausbildung
DER BODEN Boden, was ist das? Die Funktionen Verschiedene Bodenarten
Pflanzliche Stoffbildung Tierische Stoffveredlung
Statistik – Regression - Korrelation
Lernmodelle und Experimentelle Untersuchungen
Gebietsfremde und invasive Arten
Wald Allgemein Arten Zahlen Daten Fakten Berufe.
2. Populationsökologie Was ist eine Population?
Schäden durch VS Schaden: - anthropozentrisch entstanden „bezieht sich auf wirtschaftliche Verluste, die auf die Einwirkung von Organismen aber auch anderer.
WASSER ist ein DIPOL.
Ökokontofläche „Buchwald“
INHALT Über Syngenta Was bedeutet Nachhaltigkeit? Ressourcenknappheit Biodiversität Klimawandel Ernährungssicherheit Fazit.
Savannenlandschaften
Rate mal! Wie viele Lebewesen gibt es in einer Handvoll Boden?
Cyanobakterien – Was bewirkt eine Dammöffnung?
Nahrung  Nüsse  Regenwürmer  Mäuse  Frösche  früchte  Junge kaninchen.
Biopsychosoziale Entwicklung (1) Anlage oder Umwelt?
PP Ökologie von Flussauen Connectivity and biocomplexity in waterbodies of riverine floodplains C. Amoros and G. Bornette.
WWF Österreich. Braunbär Der Braunbär Gehört zu der Familie der Großbären o Eisbär, Schwarzbär, Großer Panda,... Drei Unterarten: o Kodiakbär in Alaska.
Die Rolle von benthischen Evertebratenarten in Süßwasser-Ökosystemen.
Spärliche Kodierung von Videos natürlicher Szenen Vortragender: Christian Fischer.
Abiotische Umweltfaktoren sind alle chemische und physikalische Faktoren der unbelebten Umwelt, die in einem → Biotop auf die dort.
setzt sich zusammen aus abiotischen und biotischen Faktoren
Ökologischer Fußabdruck Ökofaktoren und deren Verflechtungen.
Die Ringelnatter Grösse: Farbe/ Merkmale: Nahrung: Lebensraum:
 Präsentation transkript:

Einführung in die Ökologie SS 2003 Elisabeth Kalko Experimentelle Ökologie der Tiere Bio III Universität Ulm

Vorspann, bitte lesen! Die PowerPoint Präsentation (Teil 2) ist die Grundlage der Vorlesung Einführung in die Ökologie im SS 2003. Dies ist KEIN Vorlesungsskript im herkömmlichen Sinne. Bitte nehmen Sie die PowerPoint Präsentation als Leitfaden für die in der Klausur relevanten Themen und drucken Sie diese PowerPointpräsentation nicht am Stück aus, dies sind über 190 Einzelfolien, von denen viele nur wenige Sätze enthalten. Bitte beachten Sie: diese Folien beinhalten eine Kurzzusammenfassung der wichtigsten Schlüsselthemen, die Folien ersetzen jedoch in keinem Fall die notwendige Nachbearbeitung mit Hilfe von Lehrbüchern. Viele inhaltliche Verbindungen und Aussagen, die in der Vorlesung verbal gemacht wurden, sind nicht notwendigerweise aus den Folien alleine herauszulesen. Die Abbildungen sind herausgelassen worden, um keine Copyrights zu verletzen. Für eventuelle Fehler in dieser Vorlage wird keine Gewähr übernommen.

Diversität von Parasitengemeinschaften Jeder Wirt bietet eine Vielzahl von Mikrohabitaten; fördert Spezialisierung der Parasiten Einfluß von Parasiten auf die Evolution der Vielfalt (Janzen-Connell Effekt): “Flucht” vor Parasiten verhindert Monokulturbildung und erhöht Vielfalt Bestimmung dieser Diversität auch abhängig vom Forschungsaufwand...

Anzahl Parasitenarten und Anzahl Publikationen für 60 Arten kanadischer Süßwasserfische

Abhängigkeit der Befallsintensität von Sozialstruktur der Wirte Vorhersage: soziale Arten sollten stärker parasitiert sein und höhere Parasitendiversität aufweisen als solitär lebende Arten aufgrund erhöhter Übertragungsmöglichkeiten. Aber: dies sollte nicht für Parasiten gelten, die sich über Zwischenwirte vermehren

Artenreichtum der Parasitenfauna in Abhängigkeit von der Lebensform des Wirtes Salmoniden: solitäre Formen geringere Parasiten- diversität, entspricht Vorhersage Cyprinidae: größeres Verbrei- tungsgebiet, höhere Parasiten- last bei solitären und sozialen Formen Percidae: Zunahme der Diversität der Parasiten mit Größe und Alter des Wirtes

Parasiten ändern das Verhalten ihrer Wirte Zur Erhöhung der Übertragungs (Infektions)rate werden Verhaltensänderungen im Wirt induziert: Bsp. Fühlersignal durch Sporocysten von Leucochloridium (Plathelminthes) bei der Bernsteinschnecke (Succinea) zur Aufnahme von Vögeln (Endwirt)

Parasiten ändern das Verhalten ihrer Wirte Beißkrampf von Ameisen an Spitzen von Grashalmen bei der Übertragung von den Metacercarien des Kleinen Leberegels (Plathelminthes: Dicrocoelium dentriticum) auf Schafe

Einfluß Befallsintensität von Parasiten auf Sterberate des Wirtes Industrienationen Entw. länder Befall Stechmücke (Aedes) Schafe & Leberegel Bevölkerungskurve & Nematode (Fasciola hepatica)

Wie reagieren Wirtspopulationen auf Parasitierung? Dynamik hängt von der Fitness des Wirtes und der Infektionsrate durch den Parasiten ab. Jedoch: schwierig, dies im Freiland nachzuweisen, da Populationen in heterogener Umwelt leben Einsatz von Wirt-Parasit/ Pathogen/Parasitoid Beziehungen zur Schädlingskontrolle?

Regulation Populationsgrößen durch Parasiten? Populationsdichte Wirt in Abwesenheit von Parasit selbst reguliert (intraspezifische Konkurrenz) Persistenz von Erreger in Wirtspopulation nur möglich, wenn er selbst keine zu großen Dichten erreicht, sonst Aussterben durch intraspezifische Konkurrenz

Mögliche Ergebnisse von Parasit/Wirt Interaktionen Bei Abwesenheit vom Erreger liegt Wirtspopulation bei Umweltkapazität Bei Anwesenheit von Erreger: Herunterregulierung des Wirts auf stabile Dichte unter Umweltkapazität Wirt und Pathogen durchlaufen regelmäßige Häufigkeitszyklen

Reduktion der Populationsgröße von Wirten bei Infektionen Rotbrauner Reismehlkäfer Dörrobstmotte und Granulose- (Tribolium) & Protozoen virus nicht infiziert infiziert

Populationsdynamik Wirt/Parasit Grauer Eichenwickler & Brütende Weibchen Moor- Granulose-Virus schneehuhn & Nematoden England: regelmäßige Zyklen Schottland: keine erkennbaren Zyklen

Einsatz von Parasitoiden und Pathogenen zur Schädlingsbekämpfung

Ziel: Herunterregulierung der Populationsdichte der “Schädlinge”; Verbleiben des Parasitoids/Pathogens in Population, um Massenentwicklung zu verhindern. Parasitoid/Pathogen sollte stark genug sein, um Population herunterzuregeln, aber nicht vollständig zum Absterben bringen, denn dann stirbt auch Parasitoid/Pathogen aus und eine neu aufkommende Wirts(Schädlings)population hat “freie Bahn”.

Erfolg hängt davon ab, wie gut das System bekannt ist, z. B Erfolg hängt davon ab, wie gut das System bekannt ist, z. B. Etablierung von Parasitoiden klimaabhängig? Konkurrenzphänomene? Dichteabhängigkeit? Bsp. Insektengallen (Asphondyla borrichiae; Diptera) an Borrichia frutescens bei hohen und niedrigen Dichten von Parasitoiden Versuch: Infektion von Pflanze mit Gallen. Dann Entfernen der Pflanzen, bevor Grossteil der Parasitoide die Gallen befallen (low parasitoids) bzw. nach Befall mit Parasitoiden (high parasitoids). Danach: Verbringen aller Pflanzen an andere, isolierte Standorte

Insektengallen bei hohen und niedrigen Dichten von Parasitoiden Anzahl Gallen Insektengallen bei hohen und niedrigen Dichten von Parasitoiden niedrige P. hohe P. Parasitierungsgrad hohe P. niedrige P.

Kontrolle von Infektionskrankheiten: Bsp. Schistosoma (Pärchenegel) Aussetzen von Prädatoren zur Kontrolle der Zwischenwirte (Süßwasserschnecken): Flußkrebs (Procamburus clarkii) aus Nordamerika

Kontrolle von Infektionskrankheiten: Bsp. Schistosoma (Pärchenegel) ABER: Flusskrebs ist hoch-invasive Art, ernährt sich auch von Pflanzenmaterial (z. B. Reissetzlinge). Wichtig: Kontrollstudien, die genau bestimmen, wie eingeführte Arten mit anderen Teilen des Ökosystems in Beziehung treten

Mutualismus Assoziation von Arten, bei denen die beteiligten Arten wechselseitig voneinander profitieren (gegenseitige Ausnutzung....) Symbiose: enge, langdauernde physische Assoziation; ein Mutualist stellt Lebensraum für andere(n) dar. Beispiel Knöllchenbakterien an Leguminosen; Flechte (Pilz & Alge) “Nutzen”: Zusammenleben bewirkt höhere Geburtenrate, geringere Sterberate oder höhere Umweltkapazität aller beteiligten Arten

Sonnenblume Helianthella: starker Befall durch Bohrfliegen (Tephritidae), mitunter mehr als 85 % Samen zerstört

Extraflorale Nektarien als “Belohnung”? Anwesenheit von Ameisen reduziert den Befall von Bohrfliegen signifikant

Mutualismus zwischen Pflanzen und Ameisen Büffelhornakazie (Acacia cornigera): protein- und stärkehaltige Beltsche Körperchen an Fiederblättern; extraflorale Nektarien mit zuckerhaltigem Sekret; hohle Dornen als Nestplätze Ameisen (Pseudomyrmex) verteidigen Büffelhornakazien gegen Herbivore und gegen Beschattung durch andere Pflanzen

Formen des Mutualismus Obligat: Partner sind vollständig aufeinander angewiesen und können alleine nicht (längerfristig) überleben Fakultativ: Überleben der Partner auch getrennt möglich Beispiel Sonnenblume und Ameisen: fakultativer Mutualismus; starke Fröste führen in regelmäßigen Abständen zum vollständigen Ausfall der Sonnenblumen. Sonnenblumen bieten keine Nestmöglichkeiten für Ameisen.

Weitere Mutualismen bei Ameisen Bläulinge Gattung Maculinea: Eiablage auf ein bis zwei Pflanzenarten, Ernährung bis zum 3. Larvalstadium auf Pflanze, dann läßt sich Raupe zu Boden fallen, wird von Ameisen ins Nest eingetragen, Verpuppung in oberen Nestkammern. Andere Bläulinge (Lycaenidae) werden als Raupen von Ameisen auf Pflanzen “gehalten”. Siehe auch Blattläuse. Honigdrüsen mit “Belohnung” für Ameisen. Ameisen halten Prädatoren fern, bei Läusen auch Transport zu anderen Pflanzen.

Blattschneiderameisen (z. B Blattschneiderameisen (z. B. Atta): Mutualismus mit Pilz(en) (Basidiomyceten). Die Ameisen ernähren sich von den Pilzen und NICHT vom eingetragenen Blattmaterial. Blattschneiderameisen sind polyphag in Bezug auf Pflanzenmaterial, was eingetragen wird, aber Larven sind monophag in Bezug auf Pilzmaterial.

Weitere Beispiele für Mutualismus Samenverbreitung (vs. Samenprädation) und Bestäubung (vs. Nektarraub): Vielfalt der Frucht- und Blütenmerkmale (Präsentation, Farbe, Nährstoffe, Größe, Geruch, Phänologie) spiegelt Vielfalt der Samenverbreiter wider (Insekten, Vögel, Säugetiere)

Wie finden Frugivore Früchte? Feigenfrüchte (Ficus sp.) sind in Blattachseln an- geordnet. Einige Arten bleiben grün, reifen synchron und duften. Einige Arten signalisieren mit roten Früchten.

Wie finden Frugivore Früchte? Die roten Früchte werde vorwiegend von Vögeln verzehrt.

Wie finden Frugivore Früchte? Die grünen, duftenden Früchte werde vorwie- gend von Fleder- mäusen gegessen.

Enge Koevolution kann zu starker Spezialisierung und obligatorischen Mutualismen führen. Beispiel (diffuse) Koevolution bei Früchten & Blüten und ihren Verbreitern und obligater Mutualismus im Feigen-Feigenwespen System

Konflikt und Kooperation im Feigen-Feigenwespen System   Der Fortpflanzungserfolg von Feigen (Ficus: Moraceae) ist in einer obligat mutualistischen Beziehung an Feigenwespen (Agaoninae: Calcoidea) gebunden. Jede Feigenart wird dabei (fast ausschließlich...) von einer artspezifischen Feigenwespenart bestäubt.

Um den Grad und die evolutive Stabilität einer mutualistischen Beziehung zu verstehen, ist es notwendig, die Kosten und Nutzen beider Partner zu bestimmen. Besonders interessant sind dabei Mechanismen, die verhindern, daß bei einem Interessenskonflikt eine Seite die Oberhand gewinnt.

Interessenskonflikt im Feigen-Feigenwespen System Ziel:  hohe Produktion an keimungsfähigen Samen   Bestäuber-Feigenwespen: Ziel:  Nutzung der Samenanlagen der Feige zur Produktion von Feigenwespen

Welche Faktoren beeinflussen den Fortpflanzungserfolg im obligaten Feigen - Feigenwespen Mutualismus? Welche Mechanismen tragen zur Stabilität dieses Systems bei?

geflügeltes Weibchen flügel- loses Männchen Weibliche Blüten Männliche Blüte mit Staubbeuteln Syconium kurzgrifflig langgrifflig

Je größer das Syconium ist, desto mehr Samen werden gebildet Aber: Größe des Syconiums beeinflußt Verbreiterspektrum, Nährstoffallokation, Evaporation...

Faktoren, die den Fortpflanzungserfolg im obligaten Feigen - Feigenwespen Mutualismus beeinflussen   Ressourcenverfügbarkeit  Größe des Syconiums  Anzahl der Blüten Größe & Anzahl der weiblichen Bestäuberwespen  Bestäubungseffizienz  Reproduktionserfolg der Feigenwespen  Geschlechterverhältnis der Feigenwespen  „good seeds“ (Samen) vs. Feigenwespen

parasitische Wespen  negativer Einfluß auf den Fortpflanzungsserfolg der Bestäuberwespen

Trotz des Interessenkonflikts zwischen Feigen und Feigenwespen sowie einer Vielzahl von Faktoren, die den Fortpflanzungserfolg beider Partner negativ beeinflussen (wie zum Beispiel durch gallbildende und parasitische Feigenwespen), ist dieses System sehr erfolgreich:    existiert schon seit ca. 40 Mio Jahren (Bernsteinfunde)  zeichnet sich durch hohe Artenvielfalt aus  Hinweise auf eng koevolvierte Beziehungen zwischen den Feigen und Feigenwespen

  Das Feigen-Feigenwespen System stellt ein ideales Modell dar, um den Fortpflanzungserfolg der beteiligten Organismen sowohl qualitativ als auch quantitativ zu erfassen. Aus diesen Untersuchungen lassen sich Mechanismen ableiten, die zur Stabilität dieses Systems im ökologischen und im evolutiven Zeitrahmen beitragen (EES: Evolutions Stabile Strategien).

Honiganzeiger (Indicator indicator) und Honigdachs (Mellivora capensis) Vogel entdeckt Bienennest, kann es jedoch nicht öffnen Kommunikation mit Honigdachs, der das Nest öffnet Honiganzeiger frißt Bienenwachs und Larven Übertragung auf Menschen?

Destruenten, Detritivore Bei Absterben von Organismen werden diese zu Ressourcen für andere: Destruenten oder Saprophyten (Bakterien, Pilze, die tote organische Substanz nutzen) sowie Detritivore oder Saprophage bzw. Saprophore (tierische Konsumenten toter, organischer Substanz)

Gemeinsames Merkmal: keine Kontrolle der Ressourcenverfügbarkeit Gemeinsames Merkmal: keine Kontrolle der Ressourcenverfügbarkeit. Sind darauf angewiesen, daß Organismen z. B. aufgrund von Krankheiten absterben: ressourcen- bzw. substratkontrolliert. Substrat kontrolliert die Dichte der Konsumenten (Rezipienten). Ausnahme: nektotrophe Parasiten, z. B. Goldfliege parasitiert Kröten, tötet sie ab und wird dann zum Detritivoren.

Rolle der Zersetzer Fundamentale Rolle durch Rückführung von Nährstoffen, die zunächst in organischer Substanz gebunden sind, in den Stoffkreislauf, so daß sie erneut aufgenommen werden können Zersetzung: Abbau toter, organischer Substanz durch physikalische (z. B. Auswaschung) und biologische Faktoren

Freisetzung von Energie (siehe Gärungsvorgänge) und Mineralisierung von Nährstoffen (d. h. Überführung von organische in anorganische Form) Endprodukte: Kohlendioxid, Wasser, mineralische Nährstoffe

Zeitlicher Ablauf des Zersetzungsvorganges Erstbesiedler: meist Pilze und Bakterien und nektotrophe Parasiten. Nutzen meist lösliche Substanzen (Aminosäuren, Zucker). Explosionsartige Vermehrung. Abbau oft unter anaeroben Bedingungen (z. B. Gärung; verändert pH Wert; ändert Zusammen-setzung der Zersetzergemeinschaft; Sukzession)

Langsamer Abbau: mikrobielle Spezialisten, bauen widerstandsfähige Substanzen ab, v. a. Zellulose und Lignin (Holz). Bestimmte Enzymausstattung dafür notwendig. Detritivore: brechen beim Fressen Zellwände auf, v. a. bei Pflanzen wichtig für schnellen Abbau

Zelluloseverdauung (Cellulolyse) durch Detritivore Zellulasen bei Tieren bisher nur gefunden in: 1 Schabe, einige Termitenarten (Nasutitermes) Ansonsten: fakultativer oder obligater Mutualismus Exogene Mikroflora

Chemische Veränderung von totem organischen Material auf Waldboden und im Bach Lösliche Kohlenhydrate: verschwinden am schnellsten, vor allem durch Auswaschung

Terrestrische Detritivore Mikroflora & Mikrofauna Meso fauna Makro Mega fauna fauna Mikroflora & Mikrofauna

Terrestrische Detritivore Klassifizierung nach Größe Mikrofauna (Protozoen, Nematoden, Rotatorien) Mesofauna (z. B. Bodenmilben: Acari, Springschwänze: Collembola), Makro- und Megafauna (z. B. Asseln: Isopoda, Tausendfüßler: Diplopoda, Regenwürmer: Annelida, Schnecken: Gastropoda, Fliegen- und Käferlarven: Insecta).

Funktion: Zerkleinerung von Pflanzenmaterial Funktion: Zerkleinerung von Pflanzenmaterial. Umverteilung von Detritus, direkter Einfluß auf Bodenstruktur Bsp. Regenwurm: Darwin (1888) schätzte, daß Regenwürmer in 30 Jahren ca. 18 cm Boden neu gebildet haben durch Ablagerung von 50 Tonnen Ausscheidungen pro Hektar! Bei Regenwürmern wichtig Vermischen von Pflanzenmaterial und Boden, Belüftung.

Die Rolle von Hornmilben (Oribatidae) als Zersetzer - wichtige Humus- bildner - ernähren sich von zersetzendem Pflanzenmaterial, Algen, Pilze, z. T. auch Aas Rhysotritia duplicata

Darminhalte von Hornmilben (Oribatidae) in Laubstreu Enges Nahrungsspektrum, geringe Variabilität Weites Nahrungsspektrum, höhere Variabilität

Hauptnahrungsbestandteile der Nahrung von Hornmilben Unterschiedliche Spezialisierungs- grade der Horn- milben: höher spezialisierte Arten an Kanten des Dreiecks, Arten mit höherem Polyphagiegrad in der Mitte des Dreiecks

Nekrophagie Verzehren von Aas In gemäßigten Breiten ist Schwundrate abhängig von Jahreszeit: Häufigkeit von Aasfressern, mikrobielle Zersetzung. Sommer: schneller Abbau von Kadavern, die nucht durch Wirbeltiere gefunden werden, durch Wirbellose, Bakterien und Pilze (siehe z. B. Goldfliege Lucilia) Winter: langsamere Zersetzung, größtenteils mikrobieller Prozeß

Schwundrate von Kleinsäugerkadavern in England

Fallbeispiel Totengräber (Necrophorus sp.; Coleoptera) Geruchsorientierung zum Auffinden des Kadavers direkt Konkurrenz mit anderen Käfern gemeinsames Vergraben von Kadaver mit Partnerin mutualistische Beziehung mit phoretischer Milbe (Poecilochirus necrophori): saugt Fliegenmaden der Goldfliege aus, vermindert dadurch Konkurrenz der Fliegenlarven um Ressourcen mit den Käferlarven

Fallbeispiel Totengräber (Necrophorus sp.; Coleoptera) Totengräber entfernt Haare von Kadaver zur Verringerung des Fliegenbefalls Totengräber verbleibt in Kammer nach Eiablage: antibiotische Wirkungen Faeces/Speichel? Füttern der Jungen mit vorverdautem Fleischsaft, Anlocken durch akustische Signale

Bruterfolg des Totengräbers bei Milbenbefall mit Milben Bei Entfernung der Milben: je weniger tief der Kadaver liegt, desto höherer Befall mit Goldfliegen und Verringerung des Bruterfolgs

Pillendreher (Scarabeus laticollis) Verarbeitung von Kot

Koprophagie Fressen von Faeces carnivore Wirbeltiere: nährstoffarmer Kot, vorwiegend von Bakterien und Pilzen zersetzt Herbivore: meist reicher an Nährstoffen; oft spezialisierte Fauna, siehe Beispiel Mistkäfer (hohe Artenvielfalt und hohe Biomasse, Bsp. Afrika: hochdiverse Koprozönosen) Fehlen von Detritivoren: Australien, kein adequater Abbau von Rinderkot! Einführen von Mistkäfern notwendig

Zusammensetzung und Funktion der terrestrischen Detritivorengemeinschaften Zusammensetzung der Detritivorengemeinschaften ist abhängig von Temperatur, Bodenfeuchte und Zusammensetzung des Bodens Zusammensetzung der Detritivoren-gemeinschaften und Umweltbedingungen beeinflussen Zersetzungsraten

Anteile von Makro-, Meso-, und Mikrofauna an der Zersetzung in terrestrischer Ökosysteme Biomasse Makrofauna Mesofauna Mikrofauna Tropen Tundra Polarwüste Streuzersetzungsrate Organische Bodensubstanz

Akkumulation von organischer Bodensubstanz ist umgekehrt proportional zum Streuabbau Akkumulation wird durch niedrige Temperaturen und Staunässe gefördert, da dies mikrobielle Aktivität absenkt. Im Gegensatz dazu schneller Abbau und kaum Akkumulation in den Tropen

Aquatische Detritivore Im Gegensatz zu vielen terrestrischen Detritivoren zumeist Generalisten (Omnivore); z. B. keine charakteristische Aas oder Faeces-Fauna bei aquatischen Detritivoren Klassifikation anhand des Nahrungserwerbs: Zerkleinerer (shredder): fressen von grob-partikulärem organischen Material (z. B. Fallaub); z. B. Köcherfliegenlarven (Trichoptera), Flohkrebse (Amphipoda), Asseln (Isopoda)

Sediment- und Detritusfresser, z. B Sediment- und Detritusfresser, z. B. Tubifex (Oligochaet), Köcherfliegenlarven (Trichoptera) Filtrierer, z. B. Kriebelmückenlarven (Simulium), Köcherfliegenlarven (Trichoptera)

Energiefluß in limnischem Ökosystem grobes, orga- nisches Material feines, organisches Material gelöstes, orga- nisches Material Wasser- bewegung Z. B. Köcherfliegen- larven

Abbau von tierischem und pflanzlichen Material Abbaugeschwindigkeit von Tierkadavern ist nicht durch Nährstoffe begrenzt Abbaugeschwindigkeit von Pflanzenmaterial hängt vorwiegend von Stickstoff- und Phosphorgehalt ab, der von Mikroorganismen benötigt werden

Zersetzungsraten von Detritus verschiedener Herkunft N/P Verhältnis ähnlich Mikroorganismen Wasser Zersetzungsrate Land Zersetzungsrate/Tag Stickstoffgehalt Phosphorgehalt (% Trockengewicht) (% Trockengewicht)

Lebensgemeinschaften (Biozönosen) Räumlich-zeitliche Vergesellschaftung von Arten, die durch bestimmt Charakteristika geprägt sind: Dichte, Geschlechterverhältnis, Altersstruktur, Geburts- und Immigrationsrate, Mortalitäts- und Emmigrationsrate

Biozönosen Lebensgemeinschaften bestehen aus Populationen und Einzelorganismen. Kollektive Eigenschaften: Artenvielfalt, Biomasse, Produktivität Emergente Eigenschaften: Wechselbeziehungen der Organismen untereinander

Gibt es trotz der starken Variation in der Zusammensetzung von Arten-gemeinschaften Gesetzmäßigkeiten in den kollektiven und emergenten Eigenschaften?

Verteilung von Arten in einer Gemeinschaft Verteilungsmuster wird bestimmt durch Anzahl der seltenen, häufigen und sehr häufigen Arten

Beschreibung der Struktur von Lebensgemeinschaften Artenreichtum: Anzahl der Arten in einer Gemeinschaft (alpha-Diversität) Abundanz: Häufigkeit/Dichte von Arten in einer Gemeinschaft Diversität: Artenreichtum & Abundanz

Diversitätsindizes: charakterisieren Artengemeinschaften Diversitätsindizes: charakterisieren Artengemeinschaften. Hängen von Artenreichtum, aber auch von Häufigkeitsverteilung der Arten ab (z. B. Shannon-Weaver Index) Äquitabilität (Eveness): Gleichverteilung. Betrachtet Diversitätsindex in Bezug auf Dominanz von Arten.

Diversität Beispiel der Artenzusammensetzung und relativen Abundanz in zwei Baumgemeinschaften mit gleicher Artenzahl, aber unterschiedlichen Abundanzen der Arten:

Artengemeinschaft mit höherer Äquatibilität (Eveness) ist diverser als Artengemeinschaft mit Dominanz von einer Art

Artendiversität (H) und Äquatibilität (J) in gedüngten und Kontroll-Versuchsflächen (Gras) Abnahme der Diversität und Äquitabilität in gedüngten Flächen!!

Rang-Abundanz Kurven: fassen Information über Artenreichtum und relative Abundanz zusammen

Biozönosen Sind Lebensgemeinschaften abgeschlossene Einheiten? Auf welcher Ebene (räumlich-zeitlich) werden Lebensgemeinschaften betrachtet? lokal regional global Kurzzeit vs. Langzeituntersuchungen

Wie sind Arten verteilt und welche Faktoren bestimmen ihre Verteilung? Analyse von Gemeinschaftsstrukturen am Beispiel des Verteilungsmusters dominanter Baumarten in den Great Smokey Mountains, Tennnessee Wie sind Arten verteilt und welche Faktoren bestimmen ihre Verteilung? Topographische Verteilung Höhe und Relief Feuchtigkeitsgradienten % Täler - Senken - geschützte Hänge - NO exponierte Hänge SW trocken Feuchtigkeitsgrad nass

Abgrenzung und Struktur von Lebensgemeinschaften Clements (1916): Biozönosen als Superorganismus, d. h. Beziehungen zwischen Individuen, Populationen und Lebensgemeinschaften sind vergleichbar zu der Organisation von Zellen, Geweben und ganzen Organismen

Abgrenzung und Struktur von Lebensgemeinschaften Gleason (1926): Individualistisches Konzept, d. h. gemeinsames Auftreten von Arten ist “zufällig” und maßgeblich bestimmt durch Ähnlichkeiten in den Anforderungen an die Umwelt

Artenvielfalt Welche Faktoren beeinflussen Artenvielfalt in Gemeinschaften?

Artenvielfalt Grundannahme: Organismen mit gleichen ökologischen Nischen können nicht koexistieren, da sonst beide Arten in indirekter und direkter Konkurrenz um die gleichen Ressourcen stehen und entweder eine Art die andere vollständig verdrängt oder beide Arten aussterben würden (competitive exclusion)

Muster der Artenvielfalt Diversitätsgradient Tropen - Polarregionen Höhengradient

Muster der Artenvielfalt: Breitengrad Für die meisten Organismen gilt eine Zunahme der Artenvielfalt mit abnehmenden Breitengrad; d. h. die Artenvielfalt ist in den Tropen am höchsten Marine Tiere Ameisen Eidechsen Vögel geographische Breite

Eine der wenigen Aus- nahmen......Schlupf- wespen

Muster der Artenvielfalt Hängt ab von Ressourcenspektrum (zeitlich-räumliche Verfügbarkeit und -angebot) Arealgröße, strukturelle Vielfalt Nischenbreite und Nischenüberlappung Sättigungsgrad (Umfang, in dem die verfügbaren Ressourcen genutzt werden) Artenpool (Immigration, Extinktion) Einfluß von Prädation und Konkurrenz

Modelle des Artenreichtums n = Nischenbreite o = Nischenüberlapp r = Ressourcenangebot

Muster der Artenvielfalt: Habitatheterogenität erhöht Artendiver- sität Australische Säugetiere

Muster der Artenvielfalt: Heterogenität des Lebensraums Beispiel Eidechsenarten Pflanzendiversität Bedeckungsgrad strukturelle Diversität Zunahme der Artenvielfalt in reich strukturierten Lebensräumen

Arten-Areal Beziehung herbivorer Insekten auf Adlerfarn Hohe Abundanz des Adlerfarns korreliert mit höherem Insekten- reichtum

Muster der Artenvielfalt: Verbreitungsgebiet und strukturelle Vielfalt (architektonischer Rang) Phytophage Insekten

Muster der Artenvielfalt: Ressourcenabundanz Minierer Gallbildner Distelabundanz Zunahme der Artenvielfalt von Minierern und Gallbildnern mit zuneh- mender Abundanz der Wirtspflanzen

Das Paradox des Planktons (Hutchinson 1961) Hohe Artenvielfalt bei Plankton, obwohl es in relativ einfacher Umgebung vorkommt und um die gleichen Nährstoffe konkurriert Beispiel Diatomeen-Versuche von Tilman (1977): limitierende Faktoren für die Algen sind Silikat und Phosphor. Jede Diatomeen-Art besitzt ihre eigene trophische Nische und hat ein Optimum für bestimmte Stoffe. Stabile Koexistenz ist möglich, wenn keine Art die Oberhand gewinnt.

Geringfügige Unterschiede in der Wasserzusammensetzung führen zu mosaikhaften Gemeinschaftsstrukturen, bei denen die Artendominanz je nach Nahrungsangebot variiert.

Geringfügige Unterschiede in der Wasserzusammensetzung führen zu mosaikhaften Gemeinschaftsstrukturen, bei denen die Artendominanz je nach Nahrungsangebot variiert. Gemeinschaften sind hoch dynamisch!

Muster der Artenvielfalt: Höhengradienten Brutvögel Säugetiere Gefäßpflanzen (Himalaya) Abnahme der Artenvielfalt mit zunehmender Höhe

Muster der Artenvielfalt: Wassertiefe Gastropoda Polychaeten Prosobranchier Tiefe (m) Höchste Artenvielfalt in mittlerer Tiefe!

Biozönologie (community ecology): Verteilung von Artengruppierungen, Wechselwirkungen mit biotischen (Prädation, Mutualismus, Parasitismus, inter- und intraspezifische Konkurrenz, Detritivorie) und abiotischen Faktoren

Weitere diversitätsbestimmende Faktoren Bodenzusammensetzung bestimmt Nährstoffangebot Topographie bestimmt Wasserversorgung und kleinklimatische Verhältnisse Klima bestimmt Aktivitätszeiten Gemeinschaften sind hoch-dynamisch und reagieren auf Veränderungen der abiotischen und biotischen Verhältnisse mit Struktur- und Funktionsveränderungen

Intermediate levels of disturbance promote higher diversity Gleichgewichtssystem: Stabilität wird durch ein Gleichgewicht gegenläufiger Kräfte erreicht. Connell (1978): lokale Störungsereignisse sind wichtige Faktoren, die die Diversität beeinflussen und im mittleren Bereich diversitätsfördernd wirken

Anthropogene Störungen Beispiel Darien in Panama: hochdiverser Regenwald. Aber: Evidenz für starke menschliche Nutzung der Wälder vor ca. 4 000 Jahren. Dann nach Eroberung von Spaniern von einheimischer Bevölkerung verlassen worden. Erste Siedlungsnachweise in panamesischem Regenwald: bis zu 11 000 Jahre!

Nachweis Land- Wirt schaft Nachweis Einsatz von Feuer Rodung?

Anthropogener Einfluß auf Diversität: Beispiel Kalkmagerrasen

Kalkmagerrasen entstanden vor ca Kalkmagerrasen entstanden vor ca. 11 000 Jahren, als durch menschliche Besiedlung Teile des ursprünglichen Waldes in Europa gerodet wurden. Dünne, unfruchtbare Bodenschicht auf Kalk.

Kalkmagerrasen entstanden vor ca Kalkmagerrasen entstanden vor ca. 11 000 Jahren, als durch menschliche Besiedlung Teile des ursprünglichen Waldes in Europa gerodet wurden. Dünne, unfruchtbare Bodenschicht auf Kalk. Nutzung für Weidetiere, siehe zum Beispiel Trockenrasenflächen auf Schwäbischer Alb (Wacholderheiden), hohe Artenvielfalt bei Pflanzen und Tieren. Wenn Beweidung verhindert, Verbuschung! Erniedrigung der Artenvielfalt.

Beispiel Kalkmagerrasen bei Limburg (Niederlande): ohne Beweidung Dominanz des Grases Brachypodium pinnatum, nur durch gezielte Maßnahmen Erhalt von Diversität möglich

Arten-Areal-Beziehungen (Island Biogeography) Zusammenhang zwischen Artenzahl und Arealgröße Insel: kann ozeanisch sein, aber auch (isolierte) Habitate (z. B. Waldfragmente)

Arten-Areal-Beziehungen (Island Biogeography) Zusammenhang zwischen Artenzahl und Arealgröße Insel: kann ozeanisch sein, aber auch (isolierte) Habitate (z. B. Waldfragmente) Mit zunehmender Arealgröße mehr Arten

Arten-Areal-Beziehungen (Island Biogeography) Zusammenhang zwischen Artenzahl und Arealgröße Insel: kann ozeanisch sein, aber auch (isolierte) Habitate (z. B. Waldfragmente) Mit zunehmender Arealgröße mehr Arten Größere Areale (Inseln) bieten größere Habitatvielfalt

Gleichgewichtstheorie von MacArthur und Wilson Artenzahl auf einer Insel/Habitat wird durch die Raten der Einwanderung (Immigration) und Auslöschung (Extinktion) bestimmt.

Gleichgewichtstheorie von MacArthur und Wilson Artenzahl auf einer Insel/Habitat wird durch die Raten der Einwanderung (Immigration) und Auslöschung (Extinktion) bestimmt. Fließgleichgewicht des (permanenten) Artenaustausches.

Gleichgewichtstheorie von MacArthur und Wilson Artenzahl auf einer Insel/Habitat wird durch die Raten der Einwanderung (Immigration) und Auslöschung (Extinktion) bestimmt. Fließgleichgewicht des (permanenten) Artenaustausches. Hängt maßgeblich von Artenpool ab.

Dynamisches Gleichgewicht: Artenzahl auf Insel über die Zeit nahezu konstant im Gleichgewichtszustand kontinuierlicher Artenaustausch (species turnover) große Inseln beherbergen mehr Arten als kleine Inseln weiter weg gelegene Inseln haben weniger Arten als näher gelegene (Isolierungseffekt)

Arten-Areal Beziehung: Arealgröße und Anzahl der Habitate

Muster der Artenvielfalt: Inselfläche und strukturelle Diversität Herbivore und carni- vore Käfer auf Kanaren Inselfläche (km2) Pflanzenarten Vögel in Australien Fläche (ha) strukturelle Habitatdiversität

Ausschluß- und Rekolonisationsversuche in den Mangroven Floridas 8 Inseln, ca. 11-18 m Durchmesser, ca. 5-10 m hoch. Alle mit einer Mangrovenart bewachsen. 6 Experimentinseln, 2 Kontrollen

Muster der Artenvielfalt: Dauer der zeitlichen Isolierung Eidechsen auf ehemaligen Landbrücken- inseln in Californien Entspannung (relaxation): Artenzahl entsprechend der Inselgröße erreicht, vorher hohe Aussterberate Mit Zunahme der Isolationsdauer Abnahme der Artenvielfalt

Zusammenfassung Inselbiogeographie Artenvielfalt auf (Habitat)inseln nimmt mit der Größe des Gebiets zu und mit dessen Isolation ab Artenvielfalt auf (Habitat)inseln kann modelliert werden als dynamischer Gleichgewichtsprozess zwischen Einwanderung und Aussterben

Zusammenfassung Inselbiogeographie Generell nimmt die Artenvielfalt von den mittleren und hohen Breitengraden in Richtung Äquator zu Historische und regionale Langzeitprozesse beeinflussen die Struktur von Gemeinschaften und Ökosystemen