Peter Marwedel Informatik 12 TU Dortmund Germany

Slides:



Advertisements
Ähnliche Präsentationen
Digital Output Board and Motherboard
Advertisements

Service Oriented Architectures for Remote Instrumentation
An new European Power Network: Student Power
E-Solutions mySchoeller.com for Felix Schoeller Imaging
Z-Transformation Die bilaterale Z-Transformation eines Signals x[n] ist die formale Reihe X(z): wobei n alle ganzen Zahlen durchläuft und z, im Allgemeinen,
Service Discovery in Home Environments
Embedded System Hardware
DNS-Resolver-Mechanismus
P. Marwedel Informatik 12, U. Dortmund
Finite state machines & message passing: SDL
PPTmaster_BRC_ pot Rexroth Inline compact I/O technology in your control cabinet SERCOS III Components Abteilung; Vor- und Nachname.
IndraMotion MLC RoCo Electric Drives and Controls
The difference between kein and nicht.
Steinbeis Forschungsinstitut für solare und zukunftsfähige thermische Energiesysteme Nobelstr. 15 D Stuttgart WP 4 Developing SEC.
Multi electron atoms Atoms with Z>1 contain >1 electron. This changes the atomic structure considerably because in addition to the electron-nucleus interaction,
Informatik 12, TU Dortmund
fakultät für informatik informatik 12 technische universität dortmund Test Peter Marwedel TU Dortmund Informatik 12 Germany 2009/01/17 Graphics: © Alexandra.
Embedded & Real-time Operating Systems
Fakultät für informatik informatik 12 technische universität dortmund Optimizations Peter Marwedel TU Dortmund Informatik 12 Germany 2009/01/17 Graphics:
fakultät für informatik informatik 12 technische universität dortmund Optimizations Peter Marwedel TU Dortmund Informatik 12 Germany 2009/01/10 Graphics:
Fakultät für informatik informatik 12 technische universität dortmund Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany.
Fakultät für informatik informatik 12 technische universität dortmund Optimizations Peter Marwedel TU Dortmund Informatik 12 Germany 2010/01/13 Graphics:
Fakultät für informatik informatik 12 technische universität dortmund Universität Dortmund Middleware Peter Marwedel TU Dortmund, Informatik 12 Germany.
Embedded System Hardware - Reconfigurable Hardware -
Fakultät für informatik informatik 12 technische universität dortmund Specifications Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte,
Peter Marwedel TU Dortmund, Informatik 12
Fakultät für informatik informatik 12 technische universität dortmund Embedded System Hardware Peter Marwedel Informatik 12 TU Dortmund Germany 2011/03/09.
Fakultät für informatik informatik 12 technische universität dortmund Hardware/Software Partitioning Peter Marwedel Informatik 12 TU Dortmund Germany Chapter.
Fakult ä t f ü r informatik informatik 12 technische universit ä t dortmund Data flow models Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra.
Technische universität dortmund fakultät für informatik informatik 12 Embedded System Hardware Peter Marwedel Informatik 12 TU Dortmund Germany
NUMEX – Numerical experiments for the GME Fachhochschule Bonn-Rhein-Sieg Wolfgang Joppich PFTOOL - Precipitation forecast toolbox Semi-Lagrangian Mass-Integrating.
Hier wird Wissen Wirklichkeit Computer Architecture – Part 10 – page 1 of 31 – Prof. Dr. Uwe Brinkschulte, Prof. Dr. Klaus Waldschmidt Part 10 Thread and.
Three minutes presentation I ArbeitsschritteW Seminar I-Prax: Inhaltserschließung visueller Medien, Spree WS 2010/2011 Giving directions.
Thomas Herrmann Software - Ergonomie bei interaktiven Medien Step 6: Ein/ Ausgabe Instrumente (Device-based controls) Trackball. Joystick.
Hochschulteam der Agentur für Arbeit Trier Preventing the Brainware Crisis Workshop Schloss Dagstuhl Student Enrollment in Computer Science.
CCNA Exploration Network Fundamentals
Seminar Telematiksysteme für Fernwartung und Ferndiagnose Basic Concepts in Control Theory MSc. Lei Ma 22 April, 2004.
Methods Fuzzy- Logic enables the modeling of rule based knowledge by the use of fuzzy criteria instead of exact measurement values or threshold values.
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 SADDU June 2008 S. Noël, K.Bramstedt,
Grundlagen der Nachrichtentechnik
Institut für Umweltphysik/Fernerkundung Physik/Elektrotechnik Fachbereich 1 Pointing Meeting Nov 2006 S. Noël IFE/IUP Elevation and Azimuth Jumps during.
Integration of renewable energies: competition between storage, the power grid and flexible demand Thomas Hamacher.
Laurie Clarcq The purpose of language, used in communication, is to create a picture in the mind and/or the heart of another.
Institut AIFB, Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Towards Automatic Composition of Processes based on Semantic.
Lehrstuhl Technische Informatik - Computer Engineering Brandenburgische Technische Universität Cottbus 1 Hierarchical Test Technology for Systems on a.
Sanjay Patil Standards Architect – SAP AG April 2008
| DC-IAP/SVC3 | © Bosch Rexroth Pneumatics GmbH This document, as well as the data, specifications and other information set forth in.
A good view into the future Presented by Walter Henke BRIT/SLL Schweinfurt, 14. November 2006.
BAS5SE | Fachhochschule Hagenberg | Daniel Khan | S SPR5 MVC Plugin Development SPR6P.
INTAKT- Interkulturelle Berufsfelderkundungen als ausbildungsbezogene Lerneinheiten in berufsqualifizierenden Auslandspraktika DE/10/LLP-LdV/TOI/
Einführung Bild und Erkenntnis Einige Probleme Fazit Eberhard Karls Universität Tübingen Philosophische Fakultät Institut für Medienwissenschaft Epistemic.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL Recent activities on ammonia emissions: Emission inventory Rindvieh.
4th Symposium on Lidar Atmospheric Applications
Ein Projekt des Technischen Jugendfreizeit- und Bildungsvereins (tjfbv) e.V. kommunizieren.de Blended Learning for people with disabilities.
Cross-Polarization Modulation in DWDM Systems
By: Jade Bowerman. German numbers are quite a bit like our own. You start with one through ten and then you add 20, 30, 40 or 50 to them. For time you.
3rd Review, Vienna, 16th of April 1999 SIT-MOON ESPRIT Project Nr Siemens AG Österreich Robotiker Technische Universität Wien Politecnico di Milano.
Adjectiv Endungen Lite: Adjective following articles and pre-ceeding nouns. Colors and Clothes.
Berner Fachhochschule Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften HAFL 95% der Ammoniakemissionen aus der Landwirtschaft Rindvieh Pflanzenbau.
Lehrstuhl für Steuerrecht und Öffentliches Recht Prof. Dr. Roland Ismer MSc Econ. (LSE)/Prof. Dr. Klaus Meßerschmidt Grundlagen Staats- und Verwaltungsrecht.
1 Intern | ST-IN/PRM-EU | | © Robert Bosch GmbH Alle Rechte vorbehalten, auch bzgl. jeder Verfügung, Verwertung, Reproduktion, Bearbeitung,
Fakultät für informatik informatik 12 technische universität dortmund Standard Optimization Techniques 2010/12/20 Peter Marwedel TU Dortmund, Informatik.
1 Stevens Direct Scaling Methods and the Uniqueness Problem: Empirical Evaluation of an Axiom fundamental to Interval Scale Level.
Selectivity in the German Mobility Panel Tobias Kuhnimhof Institute for Transport Studies, University of Karlsruhe Paris, May 20th, 2005.
Technische Universität München 1 CADUI' June FUNDP Namur G B I The FUSE-System: an Integrated User Interface Design Environment Frank Lonczewski.
TUM in CrossGrid Role and Contribution Fakultät für Informatik der Technischen Universität München Informatik X: Rechnertechnik und Rechnerorganisation.
Technische universität dortmund fakultät für informatik informatik 12 Communication Peter Marwedel Informatik 12 TU Dortmund Germany 2012 年 11 月 21 日 These.
Institut für Nachrichtentechnik U. Reimers Technische Universität Braunschweig The MultiMedia Home Platform (MHP): Hype or Reality ?
Fakultät für informatik informatik 12 technische universität dortmund Communication Peter Marwedel Informatik 12 TU Dortmund Germany 2010 年 11 月 23 日 Graphics:
Work in Progress Ignacio Yaselli, Brunel University
 Präsentation transkript:

Peter Marwedel Informatik 12 TU Dortmund Germany Communication Peter Marwedel Informatik 12 TU Dortmund Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 2011年 06 月 11 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

Embedded System Hardware Embedded system hardware is frequently used in a loop (“hardware in a loop“):  cyber-physical systems

Communication - Requirements - Real-time behavior Efficient, economical (e.g. centralized power supply) Appropriate bandwidth and communication delay Robustness Fault tolerance Diagnosability Maintainability Security Safety

Basic techniques: Electrical robustness Single-ended vs. differential signals ground Voltage at input of Op-Amp positive  '1'; otherwise  '0' Local ground Local ground Combined with twisted pairs; Most noise added to both wires.

Evaluation Advantages: Subtraction removes most of the noise Changes of voltage levels have no effect Reduced importance of ground wiring Higher speed Disadvantages: Requires negative voltages Increased number of wires and connectors Applications: USB, FireWire, ISDN Ethernet (STP/UTP CAT 5/6 cables) differential SCSI High-quality analog audio signals (XLR) © wikipedia

Communication - Requirements - Real-time behavior Efficient, economical (e.g. centralized power supply) Appropriate bandwidth and communication delay Robustness Fault tolerance Diagnosability Maintainability Security Safety

Priority-based arbitration of communication media For example, consider a bus Device 0 Device 1 Device 2 Device 3 Bus arbitration (allocation) is frequently priority-based Communication delay depends on communication traffic of other partners No tight real-time guarantees, except for highest priority partner

Real-time behavior Carrier-sense multiple-access/collision-detection (CSMA/CD, Standard Ethernet): no guaranteed response time. Alternatives: token rings, token busses Carrier-sense multiple-access/collision-avoidance (CSMA/CA) WLAN techniques with request preceding transmission Each partner gets an ID (priority). After bus transfer: partners try setting their ID on the bus; Partners detecting higher ID disconnect themselves. Highest priority partner gets guaranteed response time; others only if they are given a chance.

Time division multiple access (TDMA) busses Each communication partner is assigned a fixed time slot. Example: http://www.ece.cmu.edu/~koopman/jtdma/jtdma.html#classical Master sends sync Some waiting time Each slave transmits in its time slot  variations (truncating unused slots, >1 slots per slave) TDMA resources have a deterministic timing behavior TDMA provides QoS guarantees in networks on chips [E. Wandeler, L. Thiele: Optimal TDMA Time Slot and Cycle Length Allocation for Hard Real-Time Systems, ASP-DAC, 2006]

FlexRay Developed by the FlexRay consortium (BMW, Ford, Bosch, DaimlerChrysler, …) Specified in SDL Improved error tolerance and time-determinism Meets requirements with transfer rates >> CAN standard High data rate can be achieved: initially targeted for ~ 10Mbit/sec; design allows much higher data rates TDMA protocol Cycle subdivided into a static and a dynamic segment.

TDMA in FlexRay Exclusive bus access enabled for short time in each case. Dynamic segment for transmission of variable length information. Fixed priorities in dynamic segment: Minislots for each potential sender. Bandwidth used only when it is actually needed. http://www.tzm.de/FlexRay/FlexRay_Introduction.html

Time intervals in Flexray © Prof. Form, TU Braunschweig, 2007 Microtick (µt) = Clock period in partners, may differ between partners Macrotick (mt) = Basic unit of time, synchronized between partners (=riµt, ri varies between partners i) Slot=Interval allocated per sender in static segment (=pmt, p: fixed (configurable)) Minislot = Interval allocated per sender in dynamic segment (=qmt, q: variable) Short minislot if no transmission needed; starts after previous minislot. Cycle = Static segment + dynamic segment + network idle time show flexray animation from dortmund

Structure of Flexray networks Bus guardian protects the system against failing processors, e.g. so-called “babbling idiots” http://www.ixxat.de/index.php?seite=introduction_flexray_en&root=5873&system_ id=5875&com=formular_suche_treffer&markierung=flexray

Communication: Hierarchy Inverse relation between volume and urgency quite common: Sensor/actuator busses

Other busses IEEE 488: Designed for laboratory equipment. Sensor/actuator busses: connecting sensors/actuators, low rates Field busses CAN: Controller bus for automotive LIN: low cost bus for interfacing sensors/actuators in the automotive domain MOST: Multimedia bus for the automotive domain (not a field bus) MAP: bus designed for car factories. Process Field Bus (Profibus): used in smart buildings The European Installation Bus (EIB): bus designed for smart buildings; CSMA/CA; low data rate. Attempts to use standard Ethernet. Timing predictability an issue.

Wireless communication: Examples IEEE 802.11 a/b/g/n UMTS; HSPA DECT Bluetooth ZigBee Timing predictability of wireless communication?

Peter Marwedel Informatik 12 TU Dortmund Germany D/A-Converters Peter Marwedel Informatik 12 TU Dortmund Germany

Embedded System Hardware Embedded system hardware is frequently used in a loop (“hardware in a loop“):  cyber-physical systems

Kirchhoff‘s junction rule Kirchhoff‘s Current Law, Kirchhoff‘s first rule Kirchhoff’s Current Law: At any point in an electrical circuit, the sum of currents flowing towards that point is equal to the sum of currents flowing away from that point. (Principle of conservation of electric charge) Example: i1 + i2+ i4 = i3 Formally, for any node in a circuit: This knowledge should be available among students, but in practice it isn’t. i1+i2-i3+i4=0 [Jewett and Serway, 2007]. Count current flowing away from node as negative.

Kirchhoff's loop rule Kirchhoff‘s Voltage Law, Kirchhoff's second rule Example: The principle of conservation of energy implies that: The sum of the potential differences (voltages) across all elements around any closed circuit must be zero [Jewett and Serway, 2007]. Formally, for any loop in a circuit: V1-V2-V3+V4=0 This knowledge should be available among students, but in practice it isn’t. V3=R3I3 if current counted in the same direction as V3 Count voltages traversed against arrow direction as negative V3=-R3I3 if current counted in the opposite direction as V3

Operational Amplifiers (Op-Amps) Operational amplifiers (op-amps) are devices amplifying the voltage difference between two input terminals by a large gain factor g Supply voltage Vout=(V+ - V-) ∙ g - op-amp High impedance input terminals  Currents into inputs  0 + V- Vout V+ Op-amp in a separate package (TO-5) [wikipedia] ground For an ideal op-amp: g   (In practice: g may be around 104..106)

Op-Amps with feedback In circuits, negative feedback is used to define the actual gain I R1 Due to the feedback to the inverted input, R1 reduces voltage V-. To which level? loop R - op-amp V1 V- + Vout ground Vout = - g ∙V- (op-amp feature) I∙R1+Vout-V-=0 (loop rule)  I∙R1+ - g ∙V- -V-=0  (1+g) ∙V- = I∙R1 V- is called virtual ground: the voltage is 0, but the terminal may not be connected to ground

Digital-to-Analog (D/A) Converters Various types, can be quite simple, e.g.:

Current I proportional to the number represented by x Loop rule:  In general: Junction rule:  I ~ nat (x), where nat(x): natural number represented by x;

Output voltage proportional to the number represented by x Loop rule*: Junction rule°: ° *  From the previous slide Hence: Op-amp turns current I ~ nat (x) into a voltage ~ nat (x)

Output generated from signal e3(t) * * Assuming “zero-order hold” Possible to reconstruct input signal?

Peter Marwedel Informatik 12 TU Dortmund Germany Sampling Theorem Peter Marwedel Informatik 12 TU Dortmund Germany

Possible to reconstruct input signal? Assuming Nyquist criterion met Let {ts}, s = ...,−1,0,1,2, ... be times at which we sample g(t) Assume a constant sampling rate of 1/ps (∀s: ps = ts+1−ts). According sampling theory, we can approximate the input signal as follows: Weighting factor for influence of y(ts) at time t [Oppenheim, Schafer, 2009]

Weighting factor for influence of y(ts) at time t No influence at ts+n

Contributions from the various sampling instances

(Attempted) reconstruction of input signal * * Assuming 0-order hold

How to compute the sinc( ) function? Filter theory: The required interpolation is performed by an ideal low-pass filter (sinc is the Fourier transform of the low-pass filter transfer function) ! fs fs /2 Filter removes high frequencies present in y(t)

How precisely are we reconstructing the input? Sampling theory: Reconstruction using sinc () is precise However, it may be impossible to really compute z(t) as indicated …. !

Limitations Actual filters do not compute sinc( ) In practice, filters are used as an approximation. Computing good filters is an art itself! All samples must be known to reconstruct e(t) or g(t).  Waiting indefinitely before we can generate output! In practice, only a finite set of samples is available. Actual signals are never perfectly bandwidth limited. Quantization noise cannot be removed.

Output Output devices of embedded systems include Displays: Display technology is extremely important. Major research and development efforts Electro-mechanical devices: these influence the environment through motors and other electro-mechanical equipment. Frequently require analog output.

Embedded System Hardware Embedded system hardware is frequently used in a loop (“hardware in a loop“):  cyber-physical systems

Peter Marwedel Informatik 12 TU Dortmund Germany Actuators Peter Marwedel Informatik 12 TU Dortmund Germany

Actuators Huge variety of actuators and output devices, impossible to present all of them. Microsystems motors as examples (© MCNC): (© MCNC)

Actuators (2) Courtesy and ©: E. Obermeier, MAT, TU Berlin http://www.piezomotor.se/pages/PWtechnology.html http://www.elliptec.com/fileadmin/elliptec/User/Produkte/Elliptec_Motor/Elliptecmotor_How_it_works.h

Secure Hardware Security needed for communication & storage Demand for special equipment for cryptographic keys To resist side-channel attacks like measurements of the supply current or Electromagnetic radiation. Special mechanisms for physical protection (shielding, sensor detecting tampering with the modules). Logical security, using cryptographic methods needed. Smart cards: special case of secure hardware Have to run with a very small amount of energy. In general, we have to distinguish between different levels of security and knowledge of “adversaries”

Summary Hardware in a loop Sensors Discretization Information processing Importance of energy efficiency, Special purpose HW very expensive, Energy efficiency of processors, Code size efficiency, Run-time efficiency Reconfigurable Hardware Communication D/A converters Sampling theorem Actuators (briefly) Secure hardware (briefly)