Bericht vom Accelerator Reliability Workshop ARW 2011

Slides:



Advertisements
Ähnliche Präsentationen
Dauermagnete Bei magnetischen Materialien unterscheidet man Eisenkerne bzw. Weicheisenstücke und Dauermagnete bzw. Hart-magnetische Materialien. Dauermagnete.
Advertisements

TAGUNG DER DEUTSCH-LUSITANISCHEN JURISTENVEREINIGUNG O processo penal português Panorâmica introdutória Der portugiesische Strafprozess ein einführender.
Ach wie gut, daß niemand weiß Der Schutz von Wissen
Herzlich Willkommen bei SIMPLE STABLE BULDING
Adjektivendungen Tabellen und Übungen.
ZWILLING Neuheiten 2008.
Das Hexenkochbuch Nicht Rattenschwänze, Spinnenbein
 Präsentation transkript:

Bericht vom Accelerator Reliability Workshop ARW 2011 A. Denker Reliability gemäß LEO: Ausfallsicherheit Betriebssicherheit Funktionsfähigkeit Verlässlichkeit Zuverlässigkeit

Statistik: Übersicht 1. 2002 ESRF 2. 2009 Triumf 3. 2011 Kapstadt 41 Beiträge von Beschleunigern 78 Teilnehmer, ohne “Locals”: 1/3 Amerika, 1/5 Asien, knapp ½ Europa 3 Beiträge aus anderen Einrichtungen Kernkraftwerk Koeberg, SALT (South African Large Telescope): jwd, Temp.gradienten South African Square Kilometer Array Project: jwd, möglichst ferngesteuert, da bereits ein Handy stört Zwei Diskussionsrunden Magnete Webseite/Forum

Statistik: wer war da Lichtquellen: SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF Spallationsquellen: PSI, SNS Zyklotrons: allg.: NSCL, iThemba, Uppsala, RIKEN, IBA med.: MGH, Orsay, HZB, Sonstige: GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab

Historischer Überblick: Hardy (ESRF)

Ausblick: Hardy (ESRF)

Ansprüche Spallation: PSI

Theorie und Programme: SNS

Theorie <-> echtes Leben

Trend formale Organisation: GSI

Trend formale Organisation: SLAC

Trend formale Organisation: CERN

Trend formale Organisation: BNL

Trend formale Organisation: NSCL

Automatisierung: Australien Lichtquellen: SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF Spallationsquellen: PSI, SNS Zyklotrons: allg.: NSCL, iThemba, Uppsala, RIKEN, IBA med.: MGH, Orsay, HZB, Sonstige: GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab

Kontrollsystem: ESRF

e_log: INFN

e_log: http://midas.psi.ch/elog

RF verbessert: RIKEN Ringzyklotron Erreicht durch Vakuum verbessert CW – konditionieren…

RF verbessert: DALINAC Temp.sensor auf RF Regelkarte

Diagnose: Diamond Remotely Controlled, Mobile, Thermal Imaging Platform

fehlende Diagnose: CERN

Wartung auch für Ersatzteile: Spring 8

Probleme durch Kleinigkeiten: SINAP

Probleme durch Kleinigkeiten: CERN

Umfrage: Magnetfehler

Stromausfälle: iThemba

Stromausfälle: Australien

med. Beschleuniger: MGH: >95%

med. Beschleuniger: Orsay

med. Beschleuniger: Siemens, prev. maintenance

med. Beschleuniger: IBA, Field Replaceable Unit

Reliability unter besonderen Umständen

Reliability unter besonderen Umständen uptime: 94%

Zusammenfassung Erfahrungsberichte aus der Praxis – nicht geschönt große Unterschiede zwischen den Beschleunigeranwendungen: die Probleme sind jedoch bei allen ähnlich intensiver Austausch, sowohl in Podiumsdiskussionen Lüdeke - zentrale Datenbank für Reliability, andreas.luedeke@psi.ch Spencer - http://slac.stanford.edu/pubs/slactns/tn04/slac-tn-09-001.pdf als auch mit den Teilnehmern viele Ideen für zu Hause mitgebracht Lichtquellen Kernphysik/Spallation Med. Beschleuniger Betriebszeit ~ 4500 h ~ 6000 h stark variierend Uptime > 98 % > 90 % > 95 %

History 1977: start of cyclotron operation for nuclear physics (VICKSI) 1995 – 2006: Ionenstrahllabor ISL – laboratory for ion beam applications internal and external (~ 70%) users ion energy: eV < Eion< 800 MeV research areas: materials modification and ion-solid-interaction materials analysis medical applications since 2007: accelerator operation for therapy purposes only

Accelerator Layout 5.5 MV Van-de-Graaff 2 x 14.5 GHz ECR sources on 150 kV platforms RFQ 16 dedicated target stations k = 132

Accelerator Performance cyclotron in operation since 1977 averaged downtime before 1995: 10 % start of therapy start of RFQ operation for users

Reduction of Downtime step by step process addressing all subsystems: sources, injectors, beam lines, cyclotron, control system preventive maintenance increased redundancy modernisation improved diagnosis reduction of elements

Preventive Maintenance regular belt change of Van-de-Graaff service of rotating parts cyclic change of spare power supplies used on HV terminal drying of SF6 gas cleaning of isolators service on vacuum pumps: oil, bearings replacement of water tubes

Modernisation new computers for control system replacement of old dipole power supplies exchange of shunt against transducer regulation in quadrupole power supplies (gain in stability: factor 10) discrete rectifiers replaced by complete 3-phase modules replacement of main coil power supply of cyclotron side effect: less energy consumption

Redundancy / Reduction of elements smaller variety of pumps, vacuum gauges, power supplies…. whenever possible: spare parts for quick exchange low intensity proton beams: no pre-bunching no water cooling of deflector plates in beam line dipoles

Improved Diagnostics display of accelerator status

Improved Diagnostics display of accelerator status 24 h charts start of main magnet overshoot procedure

Improved Diagnostics display of accelerator status 24 h charts beam stability programme

ISL  Protons for Therapy (PT) 11/04: decision to close ISL at the end of 2006 Post-Docs and technical staff on temporary positions left people were transferred to other departments stop of investments 9/06: start of planning operation solely for PT reduced man-power (less beam-time) reduction of beam lines, cables… this step: almost completed nevertheless: maintain reliability

Accelerator Performance small number of beam time hours: major events have huge impact on statistics ~ 4500 hours/year ~ 1750 hours/year

ISL  PT: Operation Comparison changing ion species and energies ~ 15 target stations varying requirements on focusing 34 weeks/year 3 shifts a day (24/24) H, 68 MeV cyclotron fixed frequency one NMR-probe/dipole 2 target stations, identical focusing 1/4 of existing beam line system 12 therapy weeks/year 2 shift operation (6:00 -22:00) Thursday: start up and tuning Friday: quality control of accelerator weekend: standby* Monday-Friday: Therapy exceptions on weekends: - experiments - infants, requiring more than 4 sessions

PT: Reliability availability 95 % in 2007 2/3 of downtime due to one major event: electrostatic injection preventive maintenance replacement of Ta shields by Ti (good experience in ECR source) after one week: failure fault of new ceramics ? Ti shields (now Ta again) delay of 2 days uptime 2008: 98 % worst case: failure in electricity supply at 6:00 am delay of 2 hours

Accelerator Operation: Reliability uptime 2009: 95 % 1/3 of downtime again due to one major event: water leak in RF interruption of therapy week for the first time since 1998 (110 therapy weeks) availability 2010: 95 % frequent drops in RF error difficult to find: isolator problems on tube socket of anode power supply

Lessons Learned turbo pumps on 60 % of rotational speed (standby mode) increases service intervals about factor 5 analysis of residual gas for water logging of electricity for failure analysis cryo pumps on cryo pumps off

Wish List Uninteruptable Power supplies: overall solution: too expensive in investment and man power thus only for computers of control system counter on frequently moved Faraday cups

ISL  PT: Installation of a Tandetron further shortening of beam lines less rooms reduction of radiation safety easy and reliable operation: no moving parts source on “ground potential” installation: Apr. 07: purchased from BAM, start of dismantling Oct. 07: transfer to HMI, installation starts Sep. 08: first beam from source Oct. 08: first beam through tandetron Mar. 09: first beam through cyclotron Aug. 10: acceptance test finished, applied for licence Dec. 10: licence granted Jan. 11: first therapy with tandetron as injector

ISL  PT: Installation of a Tandetron start of tandetron beam tests: perfect short term stability measured on FC behind cyclotron

ISL  PT: Installation of a Tandetron start of tandetron beam tests: perfect short term stability but long term stability unsatisfactory

ISL  PT: Installation of a Tandetron start of tandetron beam tests: long term stability unsatisfactory now: short and long term stability better than 5 %

Conclusion 12 therapy weeks per year past years: uptime at least 95 %

Thank you for your attention! Conclusion 12 therapy weeks per year past years: uptime at least 95 % but: the finest hardware is useless without dedicated personnel → sincere thanks to all the people involved Thank you for your attention!