Bericht vom Accelerator Reliability Workshop ARW 2011 A. Denker Reliability gemäß LEO: Ausfallsicherheit Betriebssicherheit Funktionsfähigkeit Verlässlichkeit Zuverlässigkeit
Statistik: Übersicht 1. 2002 ESRF 2. 2009 Triumf 3. 2011 Kapstadt 41 Beiträge von Beschleunigern 78 Teilnehmer, ohne “Locals”: 1/3 Amerika, 1/5 Asien, knapp ½ Europa 3 Beiträge aus anderen Einrichtungen Kernkraftwerk Koeberg, SALT (South African Large Telescope): jwd, Temp.gradienten South African Square Kilometer Array Project: jwd, möglichst ferngesteuert, da bereits ein Handy stört Zwei Diskussionsrunden Magnete Webseite/Forum
Statistik: wer war da Lichtquellen: SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF Spallationsquellen: PSI, SNS Zyklotrons: allg.: NSCL, iThemba, Uppsala, RIKEN, IBA med.: MGH, Orsay, HZB, Sonstige: GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab
Historischer Überblick: Hardy (ESRF)
Ausblick: Hardy (ESRF)
Ansprüche Spallation: PSI
Theorie und Programme: SNS
Theorie <-> echtes Leben
Trend formale Organisation: GSI
Trend formale Organisation: SLAC
Trend formale Organisation: CERN
Trend formale Organisation: BNL
Trend formale Organisation: NSCL
Automatisierung: Australien Lichtquellen: SLAC, BNL, Diamond, ESRF, PSI, Australian synchroton, Spring8, SSRF Spallationsquellen: PSI, SNS Zyklotrons: allg.: NSCL, iThemba, Uppsala, RIKEN, IBA med.: MGH, Orsay, HZB, Sonstige: GSI, HIMAC, INFN, DaLinac, Siemens, CERN, Fermilab
Kontrollsystem: ESRF
e_log: INFN
e_log: http://midas.psi.ch/elog
RF verbessert: RIKEN Ringzyklotron Erreicht durch Vakuum verbessert CW – konditionieren…
RF verbessert: DALINAC Temp.sensor auf RF Regelkarte
Diagnose: Diamond Remotely Controlled, Mobile, Thermal Imaging Platform
fehlende Diagnose: CERN
Wartung auch für Ersatzteile: Spring 8
Probleme durch Kleinigkeiten: SINAP
Probleme durch Kleinigkeiten: CERN
Umfrage: Magnetfehler
Stromausfälle: iThemba
Stromausfälle: Australien
med. Beschleuniger: MGH: >95%
med. Beschleuniger: Orsay
med. Beschleuniger: Siemens, prev. maintenance
med. Beschleuniger: IBA, Field Replaceable Unit
Reliability unter besonderen Umständen
Reliability unter besonderen Umständen uptime: 94%
Zusammenfassung Erfahrungsberichte aus der Praxis – nicht geschönt große Unterschiede zwischen den Beschleunigeranwendungen: die Probleme sind jedoch bei allen ähnlich intensiver Austausch, sowohl in Podiumsdiskussionen Lüdeke - zentrale Datenbank für Reliability, andreas.luedeke@psi.ch Spencer - http://slac.stanford.edu/pubs/slactns/tn04/slac-tn-09-001.pdf als auch mit den Teilnehmern viele Ideen für zu Hause mitgebracht Lichtquellen Kernphysik/Spallation Med. Beschleuniger Betriebszeit ~ 4500 h ~ 6000 h stark variierend Uptime > 98 % > 90 % > 95 %
History 1977: start of cyclotron operation for nuclear physics (VICKSI) 1995 – 2006: Ionenstrahllabor ISL – laboratory for ion beam applications internal and external (~ 70%) users ion energy: eV < Eion< 800 MeV research areas: materials modification and ion-solid-interaction materials analysis medical applications since 2007: accelerator operation for therapy purposes only
Accelerator Layout 5.5 MV Van-de-Graaff 2 x 14.5 GHz ECR sources on 150 kV platforms RFQ 16 dedicated target stations k = 132
Accelerator Performance cyclotron in operation since 1977 averaged downtime before 1995: 10 % start of therapy start of RFQ operation for users
Reduction of Downtime step by step process addressing all subsystems: sources, injectors, beam lines, cyclotron, control system preventive maintenance increased redundancy modernisation improved diagnosis reduction of elements
Preventive Maintenance regular belt change of Van-de-Graaff service of rotating parts cyclic change of spare power supplies used on HV terminal drying of SF6 gas cleaning of isolators service on vacuum pumps: oil, bearings replacement of water tubes
Modernisation new computers for control system replacement of old dipole power supplies exchange of shunt against transducer regulation in quadrupole power supplies (gain in stability: factor 10) discrete rectifiers replaced by complete 3-phase modules replacement of main coil power supply of cyclotron side effect: less energy consumption
Redundancy / Reduction of elements smaller variety of pumps, vacuum gauges, power supplies…. whenever possible: spare parts for quick exchange low intensity proton beams: no pre-bunching no water cooling of deflector plates in beam line dipoles
Improved Diagnostics display of accelerator status
Improved Diagnostics display of accelerator status 24 h charts start of main magnet overshoot procedure
Improved Diagnostics display of accelerator status 24 h charts beam stability programme
ISL Protons for Therapy (PT) 11/04: decision to close ISL at the end of 2006 Post-Docs and technical staff on temporary positions left people were transferred to other departments stop of investments 9/06: start of planning operation solely for PT reduced man-power (less beam-time) reduction of beam lines, cables… this step: almost completed nevertheless: maintain reliability
Accelerator Performance small number of beam time hours: major events have huge impact on statistics ~ 4500 hours/year ~ 1750 hours/year
ISL PT: Operation Comparison changing ion species and energies ~ 15 target stations varying requirements on focusing 34 weeks/year 3 shifts a day (24/24) H, 68 MeV cyclotron fixed frequency one NMR-probe/dipole 2 target stations, identical focusing 1/4 of existing beam line system 12 therapy weeks/year 2 shift operation (6:00 -22:00) Thursday: start up and tuning Friday: quality control of accelerator weekend: standby* Monday-Friday: Therapy exceptions on weekends: - experiments - infants, requiring more than 4 sessions
PT: Reliability availability 95 % in 2007 2/3 of downtime due to one major event: electrostatic injection preventive maintenance replacement of Ta shields by Ti (good experience in ECR source) after one week: failure fault of new ceramics ? Ti shields (now Ta again) delay of 2 days uptime 2008: 98 % worst case: failure in electricity supply at 6:00 am delay of 2 hours
Accelerator Operation: Reliability uptime 2009: 95 % 1/3 of downtime again due to one major event: water leak in RF interruption of therapy week for the first time since 1998 (110 therapy weeks) availability 2010: 95 % frequent drops in RF error difficult to find: isolator problems on tube socket of anode power supply
Lessons Learned turbo pumps on 60 % of rotational speed (standby mode) increases service intervals about factor 5 analysis of residual gas for water logging of electricity for failure analysis cryo pumps on cryo pumps off
Wish List Uninteruptable Power supplies: overall solution: too expensive in investment and man power thus only for computers of control system counter on frequently moved Faraday cups
ISL PT: Installation of a Tandetron further shortening of beam lines less rooms reduction of radiation safety easy and reliable operation: no moving parts source on “ground potential” installation: Apr. 07: purchased from BAM, start of dismantling Oct. 07: transfer to HMI, installation starts Sep. 08: first beam from source Oct. 08: first beam through tandetron Mar. 09: first beam through cyclotron Aug. 10: acceptance test finished, applied for licence Dec. 10: licence granted Jan. 11: first therapy with tandetron as injector
ISL PT: Installation of a Tandetron start of tandetron beam tests: perfect short term stability measured on FC behind cyclotron
ISL PT: Installation of a Tandetron start of tandetron beam tests: perfect short term stability but long term stability unsatisfactory
ISL PT: Installation of a Tandetron start of tandetron beam tests: long term stability unsatisfactory now: short and long term stability better than 5 %
Conclusion 12 therapy weeks per year past years: uptime at least 95 %
Thank you for your attention! Conclusion 12 therapy weeks per year past years: uptime at least 95 % but: the finest hardware is useless without dedicated personnel → sincere thanks to all the people involved Thank you for your attention!