Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

M ATHEMATISCHE M ODELLIERUNG AM B EISPIEL VERSCHIEDENER F ALLSTUDIEN Seminar Angewandte Mathematik für LAK Professor Schmitt Maria Hutsteiner, Kerstin.

Ähnliche Präsentationen


Präsentation zum Thema: "M ATHEMATISCHE M ODELLIERUNG AM B EISPIEL VERSCHIEDENER F ALLSTUDIEN Seminar Angewandte Mathematik für LAK Professor Schmitt Maria Hutsteiner, Kerstin."—  Präsentation transkript:

1 M ATHEMATISCHE M ODELLIERUNG AM B EISPIEL VERSCHIEDENER F ALLSTUDIEN Seminar Angewandte Mathematik für LAK Professor Schmitt Maria Hutsteiner, Kerstin Kranz

2 ÜBERBLICK Was ist Modellierung? Fallbeispiele: 1. Müllabfuhr – Optimierungsproblem 2. Rettungshubschrauber – Standortbestimmung Zusammenfassung

3 M ODELLIERUNG Reales ProblemMathematisches Problem Reale LösungMathematische Lösung Modellbildung Analyse Simulation Interpretation Überprüfung

4 MÜLL MÜLL MÜLL Stadtreinigungen entsorgten 2007: Hamburg: ~ t, 587 kg pro Einwohner, 2066 t täglich Österreich: ~430 kg pro Einwohner Optimale Route: Spart Treibstoff, Zeit Geld Mei Go Guan Chinesisches- Postboten-Problem

5 ROUTENPLANUNG -MÜLLABFUHR Optimierungskriterien: Sackgasse Einbahnstraße jede Straße mind. einmal abfahren Anfangspunkt = Endpunkt

6 M ODELLIERUNG - G RAPHENTHEORIE aus Straßennetz Graph erstellen Graph: Ein Graph besteht aus einer Menge von Knoten, Kanten und einer Zuordnung, die jeder Kante ein Knotenpaar zuweist (Knoten sind Endpunkte der Kante) Grad: Anzahl der Kantenenden an einen Knoten

7 M ODELLIERUNG - G RAPHENTHEORIE Straßen gerade Kanten Kreuzungen, Ende Sackgasse Knoten Kantengewichte (verschiedene Parameter wie z.B. Weglänge, Durchfahrtszeit usw.)

8 E ULERGRAPHEN - E ULERTOUREN Eulerweg: Ein Weg, der durch jede Kante eines zusammenhängenden Graphen genau einmal führt, heißt Eulerweg Eulergraph : Ein Graph, der eine Eulertour enthält, heißt Eulergraph Eulertour: Eulerweg mit gleichem Start-und Zielpunkt Algorithmen: Zwiebelschalen- Algorithmus (Hierholzer-Algorithmus) Fleurys Algorithmus

9 Z WIEBELSCHALEN -A LGORITHMUS 1. Schritt: Wähle einen Startknoten 2. Schritt: Gehe auf unmarkierten Kanten und markiere diese Falls alle markiert Schritt 3 Falls nicht, suche neuen Startknoten, wiederhole Schritt 2

10 3. Schritt: Gehe entlang des ersten Kreises bis er einen weiteren berührt; gehe weiter auf dem neuen bis dieser wieder einen weiteren berührt usw. Gehe den zuletzt begonnenen zu Ende, dann den vorhergehenden, usw. bis alle Kanten besucht wurden

11 F LEURYS - A LGORITHMUS Brücke : Kante in einem Graphen, bei deren Wegnahme der Graph in zwei Komponenten zerfallen würde 1. Schritt: beginne mit beliebiger Kante

12 2. Schritt: wähle nächste Kante so, dass sie im Restgraphen keine Brücke bildet … grün = Brücke

13 U NGERADE K NOTEN Knoten besitz ungeraden Grad Bsp. 2 ungerade Knotengrade Mehr als 2 ungerade Knotengrade: Anzahl gerade: wie oben Anzahl ungerade: ????

14 U NGERADE K NOTEN Satz : In jedem Graphen ist die Anzahl der Knoten mit ungeradem Grad gerade. Satz : Die Summe aller Knotengrade eines Graphen = doppelte Anzahl der Kanten, (da jede Kante die Summe aller Knotengrade genau um 2 erhöht (Anfangs- und Endknoten)) aus jedem Graph lässt sich Eulergraph entwickeln

15 T HE PERFECT MATCH Matching : Teilgraph, in dem alle Knoten höchstens Grad 1 haben Minimal : Summe der Kantengewichte Summe der Kantengewichte bei jedem anderen Matching, das diese Knoten verbindet Perfektes Matching : nur Knoten vom Grad 1, alle Knoten sind zu Paaren verbunden

16 STANDORTWAHL FÜR RETTUNGSHUBSCHRAUBER AUSGANGSPROBLEM: Ein Rettungshubschrauber soll mehrere Einsatzgebiete optimal versorgen. Was heißt optimal? BEISPIEL: gleichmäßig schnelle Versorgung der Unfallopfer

17 BSP.: Gleichmäßig schnelle Versorgung Vereinfachte Modellannahmen: Modellieren Einsatzgebiete sowie Hubschrauberstandort als Punkte in der Ebene Flugzeit zw. A und B – proportional zur Länge der geraden Strecke zw. A und B Es wird nur die Zeit bis zur Erstversorgung des Unfallopfers berücksichtigt Unfallhäufigkeit ebenfalls nicht berücksichtigt

18 BSP.: Gleichmäßig schnelle Versorgung Wenn wir annehmen, dass M Einsatzorte Ex 1 (a 11 | a 12 ), Ex 2 (a 21 | a 22 ),..., Ex M (a M1 | a M2 ) zu beachten sind und X(x 1 | x 2 ) irgendein Standort für den Hubschrauber ist, so ist für m = 1,…, M die Euklidische Entfernung zwischen dem m-ten Standort Ex m (a m1 | a m2 ) und X

19 BSP.: Gleichmäßig schnelle Versorgung CENTER ZIELFUNKTION CENTER STANDORTPROBLEM

20 Ex 1 (3,5 | 6) Ex 2 (-1,5 | 10) X(1 | 8) ZWEI EINSATZORTE: Mittelpunkt der Strecke zw. den beiden Einsatzorten

21 Außerhalb der beiden Kreisscheiben ist die Entfernung sowohl von Ex 1 als auch von Ex 2 größer als r *. In der (gelben) Kreisscheibe um Ex 1 mit Radius r * hat jeder Punkt X außer X * eine Entfernung von Ex 2, die größer als r * ist. Analog hat jeder Punkt X außer X* in der (grünen) Kreisscheibe um Ex 2 mit Radius r * eine Entfernung von Ex 1, die größer als r * ist Ex 1 (1 | 2) Ex 2 (5 | 2) X * (3 | 2) r*r* r*r*

22 X(3 | 4) Ex 1 (-2 | 2) Ex 3 (-5 | -1) Ex 2 (5 | 9) DREI EINSATZORTE – FALL1: (Spitzwinkeliges Dreieck) Umkreismittelpunkt

23 Der einzige Punkt mit Euklidischer Entfernung kleiner oder gleich r* zu allen drei existierenden Standorten ist X*. Ex 2 (2 | 6) Ex 1 (2 | -2) Ex 3 (8 | 0) X*(4 | 2)

24 X U (-2 | -4) Ex 2 (1 | 3) X M (0 | 1) Ex 1 (-5 | 3) Ex 3 (5 | -1) FALL2: ( Stumpfwink. Dreieck)

25 Seien Ex 1 und Ex 2 die Endpunkte der längsten Seite und X* der Mittelpunkt dieser Seite. Dann gilt für jeden Standort X, der von X * verschieden ist:

26 FALL 3 (?) – rechtwinkeliges Dreieck

27 SATZ:

28 MEHR ALS DREI EINSATZORTE: Lösung durch Probieren?

29 Ex 1 (0 | 0) Ex 2 (9 | -2) X 1 (4 | 5) Ex 3 (7 | 13) Ex 4 (4 | 15)

30 Ex 1 (0 | 0) Ex 2 (9 | -2) Ex 3 (7 | 13) Ex 4 (4 | 15) X 2 (5 | 4)

31 Ex 1 (0 | 0) Ex 2 (9 | -2) Ex 3 (7 | 13) Ex 4 (4 | 15) X 3 (5 | 5)

32 Ex 1 (0 | 0) Ex 2 (9 | -2) X 1 (4 | 5) Ex 3 (7 | 13) Ex 4 (4 | 15)

33 MEHR ALS DREI EINSATZORTE: Zurückführung auf das Problem mit zwei oder drei Einsatzorten Für alle Paare und Tripel in der Menge Ex mache das folgende: Schritt 1: Bestimme den optimalen Center Standort X und den optimalen Zielfunktionswert r für das Center Standortproblem mit zwei bzw. drei Einsatzorten. Schritt 2: Bestimme den Kreis mit Radius r um X. Falls die entsprechende Kreisscheibe alle Punkte in Ex enthält, ist X=X* und r=r* (X*... Optimaler Center Standort, r*... Optimaler Center Zielfunktionswert)

34 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5) X*(3 | -1) r* 15,8

35 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

36 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

37 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

38 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

39 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

40 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

41 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5) > 90°

42 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

43 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5) > 90°

44 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5)

45 Ex 1 (-12 | 4) Ex 2 (14 | 7) Ex 3 (18 | -6) Ex 4 (-9 | -5) X*(3 | -1) r* 15,8

46 Optimierung bei Kenntnis der Unfallhäufigkeit EIN HUBSCHRAUBER – ZWEI EINSATZORTE 1) Intuitive Lösungsfindung w 1, w 2... Unfallhäufigkeiten in Ex 1 u. Ex 2 Bsp.: w 1 < w 2, etwa w 1 =1, w 2 =2 - Hubschrauber wird näher an Ex 2 heranrücken Ex 1 Ex 2 Schwerpunkt

47 Optimierung bei Kenntnis der Unfallhäufigkeit EIN HUBSCHRAUBER – ZWEI EINSATZORTE 2) Zielfunktion und Optimierung

48 Optimierung bei Kenntnis der Unfallhäufigkeit EIN HUBSCHRAUBER – ZWEI EINSATZORTE 2) Zielfunktion und Optimierung

49 Optimierung bei Kenntnis der Unfallhäufigkeit EIN HUBSCHRAUBER – ZWEI EINSATZORTE 2) Zielfunktion und Optimierung Minimierung der Zielfunktion führt zur Lösung: Schwerpunkt

50 Optimierung bei Kenntnis der Unfallhäufigkeit EIN HUBSCHRAUBER – N EINSATZORTE Zielfunktion: Bedingung: Lösung:

51 n Hubschrauber – m Einsatzorte LÖSUNGSALGORITHMUS: Wähle n verschiedene Einsatzorte als Hubschrauberstandorte zufällig aus. Ordne jeden Einsatzort einem ihm nächstgelegenen Hubschrauberstandort zu. Verlege jeden Hubschrauber in den optimalen Standort der ihm zugeordneten Einsatzorte. Bewegt sich dabei kein Hubschrauber mehr, halte an, andernfalls gehe zu 2.

52 n Hubschrauber – m Einsatzorte - BEISPIEL

53 Z USAMMENFASSUNG Optimierung des Weges in vielen Bereichen anwendbar (Busrouten, Speditionen, Postboten, Museen) Ortlieb et. al. Mathematische Modellierung. Vieweg und Teuber, Wiesbaden, Hamacher, E. Korn, R. Korn, Schwarze. Mathe und Ökonomie. Universum Verlag, Wiesbaden, Gritzmann, Brandenberg. Das Geheimnis des kürzesten Weges. 3. Auflage, Verlag Springer, Berlin, Heidelberg, 2005.


Herunterladen ppt "M ATHEMATISCHE M ODELLIERUNG AM B EISPIEL VERSCHIEDENER F ALLSTUDIEN Seminar Angewandte Mathematik für LAK Professor Schmitt Maria Hutsteiner, Kerstin."

Ähnliche Präsentationen


Google-Anzeigen