Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Zähe Keramik durch Gefügedesign

Ähnliche Präsentationen


Präsentation zum Thema: "Zähe Keramik durch Gefügedesign"—  Präsentation transkript:

1 Zähe Keramik durch Gefügedesign
Zähigkeit von Keramiken: wie wird die Zähigkeit erhöht durch gezieltes Design des Gefüges? Ziel: Wie wird die Zähigkeit von Keramiken erhöht durch gezieltes Gefügedesign? Zähe Keramik durch Gefügedesign

2 Zähe Keramik durch Gefügedesign
Literature Mechanical properties of ceramics; John B. Watchman; John Wiley; 1996 Materials Principles & Practice, Butterworth Heinemann, Edited by C. Newey & G. Weaver. G.E. Dieter, Mechanical Metallurgy, McGrawHill, 3rd Ed. Courtney, T. H. (2000). Mechanical Behavior of Materials. Boston, McGraw-Hill. R.W. Hertzberg (1976), Deformation and Fracture Mechanics of Engineering Materials, Wiley. N.E. Dowling (1998), Mechanical Behavior of Materials, Prentice Hall. D.J. Green (1998). An Introduction to the Mechanical Properties of Ceramics, Cambridge Univ. Press, NY. A.H. Cottrell (1964), The Mechanical Properties of Matter, Wiley, NY. Zähe Keramik durch Gefügedesign

3 Zähe Keramik durch Gefügedesign
Material-Tetraeder Processing Leistungsfähigkeit Gefüge Eigenschaft: Zähigkeit Zähe Keramik durch Gefügedesign

4 Spannungskonzentration an der Risspitze 1
Inglis zeigte, dass die Spannungen an der Risspitze überhöht sind, besonders bei spröden Werkstoffen die sie nicht durch plasitische Deformation abbauen können. Irvin (1952) beschrieb sie als Funktionen des Abstandes und der Raumwinkel. Spannungskonzentration an der Risspitze (r=Radius an der Risspitze, c=Risslänge Zähe Keramik durch Gefügedesign

5 Zähe Keramik durch Gefügedesign
Zwei Strategien! Wünschenswert ist immer eine Verbesserung von KIC und sc! KIC: Durch Massnahmen die die Bruchenergie (Oberflächenenergie erhöhen). sc: Durch Verkleinerung der kritischen Fehlergrösse (Processing). Zähe Keramik durch Gefügedesign

6 Spannungskonzentration an der Risspitze 2
Zähigkeiten KIc(MPa m1/2) Glas Glaskeramik 2.5 MgO Einkristall 1 SiC Einkristall 1.5 SiC Keramik 4-6 Al2O3 Keramik 3.5-4 Al2O3Verbundk. 6-11 Si3N4 ZrO2- c 2.8 ZrO2- c/t PSZ 6-12 ZrO2- t TZP WC/Co 5-18 Al 35-45 Stahl 40-60 Griffith: glasartig typisch Verbund Umwandlungs- verstärkt Hartmetall Metall unter der Annahme, dass die Oberflächenenergie den einzigen Widerstand gegen den Rissfortschritt darstellt, ist dann: mit g der Oberflächenenergie (J/m2) und E dem Elastizitätsmodul (Pa) eine untere Abschätzung der Zähigkeit. Die gesamte Energie zur Erzeugung eines Risses ist : R=2 g. K ist der Spannungsintensitätsfaktor (MPam1/2). K hängt nur von der Rissgeometrie ab. Nimmte K zu, wird also die Spannung erhöht, so nimmt K zu, bis dann KIc erreicht wird, von dem an der riss dann instabil wird. Griffith zeigte dann,dass die Festigkeit proportional zum kritischen Spannungsintensitätsfaktor ist, und umgekehrt propotional zur Wurzel der grössten Fehlerkrösse. KIC ist sehr stark abhängig vom Gefüge. Zähe Keramik durch Gefügedesign

7 Absorption von Energie 2
Extrinsische Methoden: 1) Rissablenkung 2) Abschirmung der Prozesszone 3) Abschirmung des Kontakts Der Ausdruck “Abschirmung” meint, dass die Risspitze abgeschirmt wird von einem Teil der angelegten mechanischen Spannung. Zähe Keramik durch Gefügedesign

8 Zähigkeitserhöhung bei Keramiken
Rissmechanismus Detail Rissablenkung Herausdrehen der Rissfront durch Korngrenzen und durch 2. Phasen Rissverbiegung Ausbuchtung der Rissfront zwischen zwei Hindernissen (Körner 2. Phase) Rissverzweigung Riss kann sich in 2 oder mehr parallel laufende Risse aufspalten Abschirmung der Risspitze durch Prozesszone 1: Mikrorissbildung 2: Umwandlungsverstärkung 3: Duktile Verformung in der Prozesszone Abschirmung der Risspitze durch Rissüberbrückung Teilweises Ablösen spröder Fasern in spröder Matrix Rissüberbrückung durch Körner und Fasern Überbrückung durch duktile Körner Zähe Keramik durch Gefügedesign

9 Zähigkeitserhöhung von Keramiken
Modellierung der Rissausbreitung und der mechanischen Eigenschaften ist komplex Unterschiedliche Modelle existieren. Unterschiedliche Mechanismen können parallel vorkommen Rissabschirmung und Rissablenkung sind am effizientesten dann Umwandlungsverstärkung und Faserverstärkung Erhöhung von KIc vor einem fortschreitenden Riss Zähe Keramik durch Gefügedesign

10 Zähigkeitserhöhung von Keramiken
1) Rissablenkung (und “meandering”) 2) Abschirmung der Prozesszone - 2A Umwandlungsverstärkung - 2B Mikrorisse - 2C Poren 3) Kontaktabschirmung - 3A Rissüberbrückung - 3B Faserbrücken Zähe Keramik durch Gefügedesign

11 Zähigkeitserhöhung von Keramiken
Wenn Körner einer 2. Phase im Gefüge eingebaut werden mit einem anderen E-Modul als die Matrix, dann kann der Unterschied im E-Modul den Riss entweder anziehen oder abstossen. Dies führt zur Ausbuchtung des Risses oder zur Ablenkung des Risses. Das erstere ist eine Ablenkung in der Riss Ebene, das zweite eine Ablenkung aus der Rissebene. In beiden Fällen sieht die Rissfront eine geringere Spannung. Rissablenkung kann durch Teilchen erzielt werden die einen höheren Risswiderstand haben als die Matrix oder einen anderen E- Modul. Rissablenkung erfolgt auch an den Grenzflächen von Laminaten. Zähe Keramik durch Gefügedesign

12 Zähe Keramik durch Gefügedesign
1 Rissablenkung tilting twisting Rissablenkung an SiC Körnern in einer Al2O3 Matrix Zähe Keramik durch Gefügedesign

13 Zähe Keramik durch Gefügedesign
1 Rissablenkung In Korngrenzen braucht der Riss nur 1/2 (=Oberflächenenergie) aufzubringen verglichen mit dem Einkristall. Daher sollte der Riss immer durch die Korngrenzen gehen. Aber! Die Rissfront muss ihre Richtung ändern, also drehen. Dies hat eine Erhöhung des Risswiderstandes zur Folge: K() für tilting! Für twisting: twisting bringt mehr für den gleichen Winkel! Zähe Keramik durch Gefügedesign

14 Zähe Keramik durch Gefügedesign
2. Rissabschirmung Umwandlungsverstärkung Es gibt unterschiedliche Mechanismen um einen Riss von der angelegten Spannung abzuschirmen. Der bekannteste ist die Umwandlungsverstärkung. Sie wirkt bei Metallen (Stählen) und Keramiken (ZrO2). Das Prinzip beruht auf der Einlagerung einer metastabilen 2. Phase in die Matrix die unter mechanischer Spannung umwandelt (sonst aber nicht!) Zähe Keramik durch Gefügedesign

15 2A Umwandlungsverstärkung
Das klassische Beispiel ist ein Verbundwerkstoff mit einigen Vol.% ZrO2 eingelagert in Oxiden oder anderen spröden Keramiken. Die Hochtemperaturmodifikation von ZrO2 ist tetragonal (t-ZrO2) und hat eine deutlich höheres spezifisches Gewicht als die monokline (m-ZrO2)Tieftemperaturmodifikation. Um die Triebkraft für die Umwandlung zu senken (also die Umwandlungstemperatur zu senken) wird meist ein anderes Metalloxid zulegiert wie z.B. Ce2O3 oder Y2O3. Zähe Keramik durch Gefügedesign

16 Zähe Keramik durch Gefügedesign
ZrO2 Modifikationen Transformation Toughening in Zirconia-Containing Ceramics Richard H. J. Hannink* J. Am. Ceram. Soc., 83 [3] 461–87 (2000) Zähe Keramik durch Gefügedesign

17 Keramiken mit ZrO2 Einlagerungen oder aus ZrO2
Zähe Keramik durch Gefügedesign

18 2A Umwandlungsverstärkung : Phasenumwandlung in ZrO2
Zähe Keramik durch Gefügedesign

19 Zähe Keramik durch Gefügedesign
2A Das Y2O3-ZrO2 System PSZ: teilstabilisierte ZrO mol% Y2O3 stabilisiertes kubisches ZrO2 wird bei hoher Tempertaur dicht gesintert und bei tieferer Temperatur im Zweiphasengebiet C+T geglüht. Dabei scheiden sich t-Gebiete kohärent in den kubischen Körner aus. TZP: zrikonia Tetragonal Polycrystals: Einphasiges t-ZrO2 wird bei °C gesintert und durch Tempern die Korngrösse eingestellt. Zähe Keramik durch Gefügedesign

20 Zähe Keramik durch Gefügedesign
Das MgO-ZrO2 System PSZ: teilstabilisierte ZrO mol% MgOstabilisiertes kubisches ZrO2 wird bei hoher Tempertaur dicht gesintert und bei tieferer Temperatur im Zweiphasengebiet C+T geglüht. Dabei scheiden sich t-Gebiete kohärent in den kubischen Körner aus. Zähe Keramik durch Gefügedesign

21 Festigkeit und Zähigkeit
Zähe Keramik durch Gefügedesign

22 2A Umwandlungsverstärkung: Umwandlungsverformung
Bei der Umwandlung ändert sich die Dichte (das Volumen eine Kornes vergrössert sich um ~5%). Diese Umwandlungsverformung erzeugt an der Risspitze eine Druckspannung senkrecht zur Rissausbreitung. Zähe Keramik durch Gefügedesign

23 2A Umwandlungsverstärkung : kritische Korngrösse von t-ZrO2
Eine wichtige Konsequenz dieser Umwandlungsdeformation ist, dass sie zu einer zusätzlichen druckspannung führt die gegen die weiter Umwandlung anderer Körner in der Matrix gerichtet ist. Die ZrO2 teilchen müssen klein genug sein, damit sienicht von selbst schon bei der Abkühlung nach der Herstellung durch die thermischen Spannungen umwandeln. Eine Obergrenze ist etwa 1µm. Zähe Keramik durch Gefügedesign

24 2A Umwandlungsverstärkung : Transformation  Arbeit
Die Spannung ander Risspitze baut die Druckspannungen auf die metastabilen m-ZrO2 Teilchen ab und dieses kann von t nach m umwandeln. Es verbleibt dann in der monoklinen Symmetrie. Die Spannung die die Umwandlung ausgelöst hat verrichtet Arbeit und so wird Energie verbraucht während der Umwandlung. Zusätzlich wirken Rissablenkung und Rissabschirmung. Zähe Keramik durch Gefügedesign

25 2A Umwandlungsverstärkung : ZTA
ZTA = ZrO2 in Al2O3 Scanning back-scattered electron microscopy image showing the microstructure of the Al2O3±10 vol.-% ZrO2 nanocomposite processed by the colloidal processing route . The sample shows ZrO2 nanometersized grains (the brighter phase) homogeneously distributed in a fine-grain Al2O3 matrix (the darker phase). Chevalier, J. et al.: Extending the Lifetime of Ceramic Orthopaedic Implants. Advanced Materials, (21): p Zähe Keramik durch Gefügedesign

26 Prozesszone bei der Umwandlungsverstärkung in ZrO2
Transformation Toughening in Zirconia-Containing Ceramics Richard H. J. Hannink* J. Am. Ceram. Soc., 83 [3] 461–87 (2000) Zähe Keramik durch Gefügedesign

27 2A Umwandlungsverstärkung : Dier Prozesszone
Die Zone in der die Umwandlung stattfindet wird zur Rissflanke. Die Gegend um die Risspitze ist die Prozesszone. In der Prozesszone finden die Zähigkeits erhöhenden Prozesse statt. Zähe Keramik durch Gefügedesign

28 2A Umwandlungsverstärkung : Gefüge
Transformation Toughening in Zirconia-Containing Ceramics Richard H. J. Hannink* J. Am. Ceram. Soc., 83 [3] 461–87 (2000) 200nm Umwandlung kann durch Röntgenbeugung und Ramanspektroskopie detektiert werden. (a) Linsenförmige kohärente t-ZrO2 Ausscheidungen in einem c-ZrO2 Korn das mit MgO stabilisiert ist. (b) Umgewandelte ZrO2 Teilchen an der Risspitze. Zähe Keramik durch Gefügedesign

29 Zähe Keramik durch Gefügedesign
R-Kurvenverhalten Transformation Toughening in Zirconia-Containing Ceramics Richard H. J. Hannink* J. Am. Ceram. Soc., 83 [3] 461–87 (2000) Zähe Keramik durch Gefügedesign

30 Was sind Verbundwerkstoffe?
Zwei unterschiedliche Werkstoffe werden kombiniert mit dem Ziel ein Eigenschaftsprofil zu erhalten das keiner der zwei Werkstoffe alleine erreichen kann. Teilchen verstärkte Verbund Particulate reinforced composites Kurzfaser verstärkte Verbunde Short fiber reinforced composites Langfaser verstärkte Verbunde; 2-D; 3-D; verwoben etc. Koextrudierte Faserwerkstoffe - Fasermonolithe Zähe Keramik durch Gefügedesign

31 2A Transformation toughening: quantitative approach
It is not possible to lay out the details of how to describe transformation toughening in a fully quantitative fashion here. An equation that describes the toughening effect is as follows, where ∆K is the increment in toughness (units of stress intensity): ∆K = C E Vtrans etrans √h / (1-n) C is a constant (of order 1) E = modulus Vtrans = volume fraction transformed etrans = transformation strain (dilatation) h is the width of the process zone n is Poisson’s ratio Zähe Keramik durch Gefügedesign

32 Zähe Keramik durch Gefügedesign
2B Microcracking Less effective than transformation toughening is microcracking in the process zone. Microstructural elements are included that crack over limited distances and only at the elevated (tensile) stresses present in the crack tip. Zähe Keramik durch Gefügedesign

33 2B Microcracking: particles
Microcracking depends on second phase particles that can crack easily. The cracking tendency depends on particle size: if they are too small, then the stress intensity does not reach their critical K (typically, 1µm). Residual stresses aid cracking, so differences in thermal expansion (with the matrix) are important. An equation that describes the toughening effect is as follows, where DK is the increment in toughness (units of stress intensity): DK = C E etrans √h / (1-n) C is a constant (of order 1), E = modulus, ecrack = cracking strain (dilatation) h is the width of the process zone, and n is Poisson’s ratio. Zähe Keramik durch Gefügedesign

34 Zähe Keramik durch Gefügedesign
2C Void formation Void formation in a process zone can have a similar effect to micro-cracking. In materials such as high strength steels, e.g. 4340, the source of the voiding is ductile tearing on a small scale as the crack opens. The spatial organization of the voids is important. Random distributions are better than either clusters or sheets. Zähe Keramik durch Gefügedesign

35 3A Crack wedging/ bridging
Wherever the crack results in interlocking grain shapes exerting force across the crack, stress (intensity) at the crack tip is reduced. Crack opening Zähe Keramik durch Gefügedesign

36 Zähe Keramik durch Gefügedesign
Laminat Verbunde Schichten mit unterschiedlichen E Moduli werden kombiniert. Werden Schichten mit geringem Risswiderstand senkrecht zur Rissausbreitung angeordnet, dann kann ein Riss an der Grenzfläche abgelenkt werden. Die Spannung an den zwei Rissfroonten ist jetzt deutlich geringer und zwei neue Oberflächenpaare mussten gebildet werden (braucht Energie!) Zähe Keramik durch Gefügedesign

37 ** INCREASE WORK OF FRACTURE **
ROLE OF FIBERS CRACK BRIDGING CRACK DEFLECTION ** INCREASE WORK OF FRACTURE ** Modulus of fibers and matrix are approximately the same. Fibers have higher strain to failure than matrix. Matrix cracking precedes fiber failure. Zähe Keramik durch Gefügedesign

38 TOUGHENING MECHANISMS FOR CERAMIC COMPOSITES
Zähe Keramik durch Gefügedesign

39 Si3N4/BN Fibre composite versus Si3N4 monolith
Si3N4: Av. Flex. strength = 460 ± 53 MPa Mechanical Properties of Si3N4/BN Fibrous Monoliths Zähe Keramik durch Gefügedesign

40 Properties Comparison of Sinboron™ and Monolithic Si3N4
Zähe Keramik durch Gefügedesign

41 Zähe Keramik durch Gefügedesign
COST COMPARISONS Zähe Keramik durch Gefügedesign

42 Toughening mechanisms
crack deflection and crack branching contact shielding processes (wedging (verkeilen) causing by broken out grains or rough crack surfaces, and crack bridging stress induced zone shielding (transformation toughening and microcracking, residual stress fields Zähe Keramik durch Gefügedesign

43 Zähe Keramik durch Gefügedesign
3B Faserbrücken Alles was den Riss hinter der Risspitze zusammenhält entlastet die Risspitze Die Zähigkeit wird erhöht durch: 1.)Die Menge an Fasern pro Fläche senkrecht zur Rissfront 2.)Grossen Faserdurchmesser 3.) Hochfeste, steife Faser und schwache Bindung der Faser in der Matrix erhöht die abgelöster Faser/Matrix Grenzfläche Zähe Keramik durch Gefügedesign

44 Zähe Keramik durch Gefügedesign
3B Ligament bridging Zähe Keramik durch Gefügedesign

45 Zähe Keramik durch Gefügedesign
3B Grain bridging Scanning electron micrographs of a SiC whisker bridging at various stages of crack opening. From left to right, the stress intensity is increasing. rp=Teilchenradius P=Bruchfestigkeit der Brücke Zähe Keramik durch Gefügedesign

46 3B Fiber/ligament bridging strain dependence
Kritisch ist das Verhältnis von Faserfestigkeit zu der der Matrix, und der Matrix/Faser grenzfläche. Hohe Zähigkeiten werden für schwache Faser/Matrix grenzflächen gefunden. Zähe Keramik durch Gefügedesign

47 Langfaser verstärkte Keramik
Faserfestigkeit und Modul höher als die der Matrix. Deformation in den Fasern=Deformation in der Matrix Matrix bricht Matrix allein c=Spannung an deen Kompositwerkstoff angelegt Ef;Em = Moduli der Fasern und der Matrix Die Matrix versagt wenn diese Spannung überschritten wird. Die Spannung auf die Matrix wird durch einen hohen Volumenanteil Fasern und ihren hohen E-Modul reduziert. Zähe Keramik durch Gefügedesign

48 Zähigkeitssteigerung durch Faserverbundwerkstoffe
Zähe Keramik durch Gefügedesign

49 Verstärkung mit SiC Fasern
Zähe Keramik durch Gefügedesign

50 “Single Source Precursors“ Compounds with Desired Elements
Herstellung von SiC - Fasern Si C N n Si Polycarbosilazanes N Si B Si N C N Si C N n C Monomeric Units “Single Source Precursors“ Si C N n B B Polyborocarbosilazanes Compounds with Desired Elements after J.Bill, F.Aldinger, Z.Metallk., 87, 1996, 827 Zähe Keramik durch Gefügedesign

51 ACR’S RAPID PROTOTYPING PROCESS FOR CERAMICS
Zähe Keramik durch Gefügedesign

52 ACR’S RAPID PROTOTYPING PROCESS FOR CERAMICS
Zähe Keramik durch Gefügedesign

53 ACR’S RAPID PROTOTYPING PROCESS FOR CERAMIC COMPOSITES
Automated tow placement of ceramic prepregs. Processing inputs controlled through Labview interface. Temperatures measured and controlled through a thermal imaging camera. Zähe Keramik durch Gefügedesign

54 Fabrication of a fiber reinforced ceramic blisk component
Zähe Keramik durch Gefügedesign


Herunterladen ppt "Zähe Keramik durch Gefügedesign"

Ähnliche Präsentationen


Google-Anzeigen