Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Übung Integrierte Schaltungen

Ähnliche Präsentationen


Präsentation zum Thema: "Übung Integrierte Schaltungen"—  Präsentation transkript:

1 Übung Integrierte Schaltungen

2 Organisatorisches Termine:
Themen dieser Übungen und auch der Hausaufgaben sind klausurrelevant 30.10.’09 20.11.’09 27.11.’09 11.12.’09 08.01.’10 22.01.’10 05.02.’10

3 Organisatorisches Hausaufgaben:
Bei Abgabe aller Aufgaben (komplett, d.h. alle Aufgaben bearbeitet) und mindestens 66% korrekter Lösungen: 2 Bonuspunkte auf die Klausur bzw. Mündliche Prüfungsnote um 0,3 besser Aufgaben werden jeweils am Ende des Termins ausgegeben; Lösungen spätestens bis zum folgenden Termin abgeben Aufgabenblätter sind immer zum jeweiligen Termin auf der Institutsseite unter “Personen” – “Stephan Leuschner” – “Materialien zur UE Integrierte Schaltungen” zu finden Sprechstunde: Montags, 15 – 16 Uhr sowie nach Vereinbarung (Telefonnr. Bzw. -Adresse siehe Institutshomepage)

4 Integrierte Schaltungen
Herstellung einer integrierten Schaltung im CMOS Prozess (Beispiel: NMOS/PMOS) Integrierte R, L, C und Dioden im CMOS-Prozess Entwurf einer IC mit CAD-Software (Beispiel: Cadence Suit)

5 Herstellung einer integrierten Schaltung
Verfügbare Technologien: Bipolar-Prozess (schneller, höhere Verstärkung, großer Flächenbedarf, große Verlustleistung, geringere Ausbeute als CMOS) CMOS-Prozess (höhere Integration, weniger Verlustleistung, langsamer als Bipolaren) BiCMOS-Prozess (Vereint die Vorteile der Bipolar- und der CMOS-Technologie, die Herstellung ist aber um 10-20% teurer als mit einem reinen CMOS-Prozess) NMOS-Prozess (kleinerer Flächenbedarf als CMOS aber höhere Verlustleistung, heutzutage nicht mehr benutzt)

6 Komplementär-Kanal-MOS-Technik (CMOS)
Sehr geringe Ruheverlustleistung in digitalen Schaltungen: es fließt nur ein geringer Strom im durchgeschalteten Zustand (Sperrstrom) Sehr hohe Eingangsimpedanz, rein kapazitiv Herstellung: Das Polysilizium-Gate wirkt als Maske und schützt das untere Gate-Oxide (Self-alignment der Source- und Drain-Diffusionen): sehr hohe Auflösung und Präzision CMOS ist die ideale Technologie für sehr hohe Integration (VLSI). Der heutige Marktanteil der CMOS Technologie beträgt über 75%

7 Teil I CMOS Prozess

8 Monokristall-Seule (Si) Bearbeiteter Wafer
CMOS-Prozess Durchmesser max. 30 cm Einzelne Chips

9 Lithographischer Prozess
Eine integrierte Schaltungen wird mittels verschiedener Schritte gefertigt: Belichtung durch verschiedene Masken Dotierung Chemisches Ätzen Implantation/Diffusion Auftragung/Aufdampfung Behandlung mit hohen Temperaturen

10 Einzelner Chip: „Die“ Die einzelnen Chips werden nach dem lithographischen Prozess abgeschnitten Alle Chips sind in der Regel identisch: jeder ist eine integrierte Schaltung Draufsicht Seitenansicht

11 Lithographie Licht (UV) Maske (Glas) Belichtetes Photoresist Wafer:
SUBSTRAT (Si) + PHOTORESIST Maske (Glas) Glas + Chrom Belichtetes Photoresist

12 UV Chrom Maske Belichtetes Photoresist Photoresist Substrat (Si-p)

13 Belichtung des Photoresists
Die chemischen Eigenschaften des Photoresists werden durch die UV-Belichtung geändert Das belichtete Photoresist kann mit speziellen Lösungsmitteln entfernt werden

14 Funktion: verhindert das Wachstum von SiO2
Aufdampfung Si3N4 Funktion: verhindert das Wachstum von SiO2 Si3N4 SUB P

15 Maske 1: Channel-Stop Öffnungen (Isolation der Transistoren)
+ Ätzen des Si3N4 Si3N4 SUB P

16 Trennung der einzelnen Transistoren:
P+ Channel Stop (Implantation) Erhöht die Einsatzspannung der parasitären Transistoren Field Oxide Isolation (thermisches Wachstum, hohe Temperatur) Si +O2→ SiO2, Si wird konsumiert Effektive Substratdotierung Si3N4 SiO2 SUB P P+

17 Trennung der Transistoren: Field Oxide Isolation (FOX)
So genannte „Bird‘s Beaks“ entstehen, weil das Siliziumsoxid teilweise auch unter dem Si3N4 wächst. Dadurch ist die Breite des Transistors kleiner als die, die durch die Maske definiert wird Si3N4 SiO2 Bird‘s Beak Si-Bulk

18 Trennung der Transistoren: Shallow Trench Isolation (STI)
Aufdampfung vom Si3N4 Auftragung des Photoresists UV-Belichtung Nicht belichtetes Photoresist Belichtetes Photoresist Si3N4 Si-Bulk

19 Trennung der Transistoren: Shallow Trench Isolation (STI)
Chemisches Ätzen: nur das belichtete Photoresist löst sich auf Das untere Substrat wird geätzt Aufdampfung vom Siliziumsoxid Ätzen Si3N4 SiO2 Si-Bulk

20 Oxidwachstum auf der ganzen Fläche
Selektives Ätzen des Si3N4: keine Maske wird gebraucht SUB P

21 Maske 2: N-Wanne Öffnung N-Diffusion (Phosphor, Arsen)
SUB P SiO2 n-Well

22 Thermal Oxide Growth (Gate Oxide): ≈ 4 nm
Auftragung des Polysiliziums: (Gate) SUB P SiO2 n-Well

23 Maske 3: Gate Definition
SiO2 SUB P n-Well

24 Maske 4: Schutzt den PMOS vor der n- Diffusion
Self-alignment von Drain und source, das Poly-Gate wirkt als Maske Maske 4: Schutzt den PMOS vor der n- Diffusion Photoresist SiO2 SUB P n-Well

25 Maske 5: Schutzt den NMOS vor der p- Diffusion
p-Diffusion (Bor): Self-alignment von Drain und source, das Poly-Gate wirkt als Maske Maske 5: Schutzt den NMOS vor der p- Diffusion Photoresist SiO2 SUB P n-Well

26 Maske 6: Eröffnung der Metallkontakte
Oxidaufdampfung Maske 6: Eröffnung der Metallkontakte SiO2 SUB P n-Well

27 Mask 7: Metal 1 Definition
Metal1 Beschichtung Mask 7: Metal 1 Definition SiO2 SUB P n-Well

28 Mask 9: Metal 2 Definition Mask 8: Eröffnung der Vias
Metal 2 Beschichtung Mask 9: Metal 2 Definition Mask 8: Eröffnung der Vias SiO2 SUB P n-Well

29 Draufsicht und Querschnitt des CMOS-Inverters

30 Package Pins Draht Pad

31 Packages © AJHD Flip Chip – Pin Grid Array Dual Inline PIN TQFP
TEP Ball Grid Array Source: National Semiconductor

32 Realisierung der Bauelemente (Standard CMOS)
Teil II Realisierung der Bauelemente (Standard CMOS)

33 Integrierte Widerstände (1)
Poly Widerstand Resistivity (Ω/□): low Thermal coefficient (ppm/°C): average Voltage coefficient (ppm/V): low Plan Querschnitt © Zsolt M. KOVÁCS VAJNA © Zsolt M. KOVÁCS VAJNA

34 Integrierte Widerstände (2)
Diffusionswiderstand Resistivity (Ω/□): average TC (ppm/°C): low VC (ppm/V): average Well-Widerstand Resistivity (Ω/□): high TC (ppm/°C): high VC (ppm/V): high Hohe Kapazität gegen Substrat © Franco Maloberti

35 Integrierte Kondensatoren
Poly/Poly Term. Coeff: low Volt. Coeff: low Parasitic Cap: average MOS (Poly/Diffusion) Volt. Coeff: high Parasitic Cap: high MIM (Metal/Metal) Parasitic Cap: average/low Nachteil: Cap/µm2 low © Zsolt M. KOVÁCS VAJNA Metal2 SiO2 Metal1 SiO2 Si-p

36 Integrierte Spulen Die Kapazität gegen Substrat wird minimiert in dem man die obersten Metallschichten verwendet (z. B. Metal 6) Der parasitäre Serienwiderstand wird minimiert in dem man mehrere Metallschichten in parallel verwendet (z. B. Metal 4+5+6)

37 Integrierter ESD-Schutz
n-Wanne + p Diff Sub + n Diff

38 Layout Querschnitt PAD p+ n+ p+ n+ p+ N-Well Sub p- PAD n p+ n p+ n

39 Entwurf einer integrierten Schaltung
Teil III Entwurf einer integrierten Schaltung

40 Entwurf einer integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

41 Entwurf einer integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

42 Anforderungen (Analog IC)
Verstärkung Frequenzbereich Rauschen Linearität Impedanzanpassung Offset Leistungsverbrauch Chipfläche

43 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

44 Rechnungen „per Hand“ Bsp.: MOS Gleichungen
Triode Sättigung Man schätzt VGS, VDS, gm, ro ab

45 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

46 Schematic Schematische Zeichnung der Schaltung mit Symbolen, die die einzelnen Bauelemente darstellen (nMOS, pMOS, R, L, C, Dioden) und ihre Verbindungen. Anderenfalls kann man die Schaltung durch eine Text-Datei beschreiben (Netlist)

47 Bsp: Schematic (CMOS Inverter)

48 Bsp. Netlist (CMOS Inverter)
simulator lang=spectre global 0 include "/home/ams/ams_HK330/spectre/csx/mcparams.scs" include "/home/ams/ams_HK330/spectre/csx/cmos53.scs" section=cmostm include "/home/ams/ams_HK330/spectre/csx/res.scs" section=restm include "/home/ams/ams_HK330/spectre/csx/cap.scs" section=captm include "/home/ams/ams_HK330/spectre/csx/bip.scs" section=biptm I2 (net2 net11 0 0) modn w=10u l=0.3u as=1.1e-11 ad=1.1e-11 ps=12.2u \ pd=12.2u nrd=0.06 nrs=0.06 m=1 I1 (net2 net11 net9 net9) modp w=25u l=0.3u as=2.75e-11 ad=2.75e-11 \ ps=27.2u pd=27.2u nrd=0.024 nrs=0.024 m=1 V1 (net9 0) vsource dc=3.3 type=dc V0 (net11 0) vsource dc=1.6 type=sine ampl=10m freq=1G simulatorOptions options reltol=100e-6 vabstol=1e-6 iabstol=1e-12 temp=27 \ tnom=27 homotopy=all limit=delta scalem=1.0 scale=1.0 \ compatible=spice2 gmin=1e-12 rforce=1 maxnotes=5 maxwarns=5 digits=5 \ cols=80 pivrel=1e-3 ckptclock=1800 sensfile="../psf/sens.output" tran tran stop=10n errpreset=conservative write="spectre.ic" \ writefinal="spectre.fc" annotate=status maxiters=5 finalTimeOP info what=oppoint where=rawfile modelParameter info what=models where=rawfile element info what=inst where=rawfile outputParameter info what=output where=rawfile saveOptions options save=all currents=all useprobes=yes

49 Entwurf einer integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

50 Simulation Die Schaltung wird durch ein Modell simuliert, das die physikalischen Eigenschaften der einzelnen Bauelemente beschreibt. Das meistverwendete Modell ist das BSIM-Modell (Berkeley University). Mit dem Simulator kann man verschiedene Analysen durchführen: DC Operating Point (Arbeitspunkt) DC sweep AC (Kleinsignal) Transient-Analyse S-Parameter Noise-Analyse (Rauschen) Periodic Steady-state (Linearität) Monte Carlo (Statistische Analyse)

51 Bsp: Analog Artist (Transient-Analyse)

52 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

53 Layout Der Designer verwendet verschiedene Layers die zur Verfügung stehen: Metal, Poly, Active, usw. Er sieht die Draufsicht (in zwei Dimensionen) der IC

54 Bsp: Layout eines CMOS-Inverters

55 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

56 DRC/LVS/Extracted DRC (Design Rules Checker): Kontrolliert, dass die Designregeln erfüllt werden. Diese stellen sicher, dass einige unerwünschte Effekte nicht auftreten und dass die erwünschten Bauelemente korrekt funktionieren. LVS (Layout Versus Schematic): Verifiziert, dass die Bauelemente im Layout denen im Schematic entsprechen) Extracted: parasitäre Kapazitäten und Widerstände werden vom Layout extrahiert Am Ende dieses Prozesses wird die Schaltung (jetzt mit Parasitics) wieder simuliert und kontrolliert, ob die Spezifikationen noch erfüllt sind.

57 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

58 Prototypherstellung Layout -> GDS Text-Datei To the Foundry
Nach ca. 2 Monaten → Chip

59 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion

60 Entwurf einer Integrierten Schaltung
Anforderungen Rechnungen „per Hand“ Schematic (Composer) Simulationen (Analog Artist) Layout (Virtuoso) DRC / LVS / Extracted Prototypherstellung Test/Messungen Produktion


Herunterladen ppt "Übung Integrierte Schaltungen"

Ähnliche Präsentationen


Google-Anzeigen