Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenTitle Georg Raffelt, Max-Planck-Institut für Physik,

Ähnliche Präsentationen


Präsentation zum Thema: "Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenTitle Georg Raffelt, Max-Planck-Institut für Physik,"—  Präsentation transkript:

1 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenTitle Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007 RWTH Aachen Exzellenz

2 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Aachen Skyline Supernova Neutrinos 20 Years after SN 1987A

3 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Sanduleak Large Magellanic Cloud Distance 50 kpc ( light years) Tarantula Nebula Supernova 1987A 23 February 1987 Supernova 1987A 23 February 1987 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

4 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

5 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Crab Nebula Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

6 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova 1054 Petrograph Possible SN 1054 Petrograph by the Anasazi people (Chaco Canyon, New Mexico) CrescentMoon 3 concentric circles, diameter 1 foot, with huge red flames trailing to the right. (Halleys Comet ?) SN 1054 Hand signifies sacred place

7 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenGeorg Raffelt, Max-Planck-Institut für Physik, München, Germany SN 1987A Rings (Hubble Space Telescope 4/1994) Supernova Remnant (SNR) 1987A Foreground Star 500 Light-days Ring system consists of material ejected from the progenitor star, illuminated by UV flash from SN 1987A

8 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen SN 1987A Explosion Hits Inner Ring

9 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Helium-burning star HeliumBurning HydrogenBurning Main-sequence star Hydrogen Burning Onion structure Degenerate iron core: 10 9 g cm g cm 3 T K T K M Fe 1.5 M sun M Fe 1.5 M sun R Fe 8000 km R Fe 8000 km Collapse (implosion) Stellar Collapse and Supernova Explosion

10 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Collapse (implosion) Explosion Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Stellar Collapse and Supernova Explosion

11 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Newborn Neutron Star ~ 50 km Proto-Neutron Star nuc g cm 3 nuc g cm 3 T 30 MeV NeutrinoCooling Gravitational binding energy Gravitational binding energy E b erg 17% M SUN c 2 E b erg 17% M SUN c 2 This shows up as This shows up as 99% Neutrinos 99% Neutrinos 1% Kinetic energy of explosion 1% Kinetic energy of explosion (1% of this into cosmic rays) (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy 0.01% Photons, outshine host galaxy Neutrino luminosity Neutrino luminosity L erg / 3 sec L erg / 3 sec L SUN L SUN While it lasts, outshines the entire While it lasts, outshines the entire visible universe visible universe Stellar Collapse and Supernova Explosion

12 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Periodic System of Elementary Particles QuarksLeptons Charge 2/3 Up Charge 1/3 Down Charge 1 Electron Charge 0 e-Neutrino eedu Neutron Proton Proton QuarksLeptons Charm Top Gravitation Weak Interaction Strong Interaction (QCD) Electromagnetic Interaction (QED) Down Strange Bottom Electron Muon Tau e-Neutrino -Neutrino -Neutrino 1st Family 2nd Family 3rd Family Charge 2/3 Charge 1/3 Charge 1 Charge 0 Up -Neutrino -Neutrino ee d s b c t u

13 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Where do Neutrinos Appear in Nature? Astrophysical Accelerators Soon ? Cosmic Big Bang (Today 330 /cm 3 ) Indirect Evidence Indirect Evidence Nuclear Reactors Particle Accelerators Particle Accelerators Earth Atmosphere (Cosmic Rays) Sun Supernovae (Stellar Collapse) SN 1987A SN 1987A Earth Crust (NaturalRadioactivity)

14 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Hans Bethe ( , Nobel prize 1967) Thermonuclear reaction chains (1938) Neutrinos from the Sun Solar radiation: 98 % light 2 % neutrinos 2 % neutrinos At Earth 66 billion neutrinos/cm 2 sec Reaction-chains Energy 26.7 MeV Helium

15 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Sun Glasses for Neutrinos? Several light years of lead Several light years of lead needed to shield solar needed to shield solar neutrinos neutrinos Bethe & Peierls 1934: Bethe & Peierls 1934: … this evidently means … this evidently means that one will never be able that one will never be able to observe a neutrino. to observe a neutrino. 8.3 light minutes

16 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen First Detection ( ) Fred Reines (1918 – 1998) Nobel prize 1995 Clyde Cowan (1919 – 1974) Detector prototype Anti-ElectronNeutrinosfromHanford Nuclear Reactor 3 Gammas in coincidence pp nn CdCd e+e+e+e+ e+e+e+e+ e-e-e-e- e-e-e-e-

17 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino Homestake solar neutrino observatory ( ) observatory ( ) First Measurement of Solar Neutrinos

18 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Cherenkov Effect Water Elastic scattering or CC reaction Neutrino LightLight Cherenkov Ring Electron or Muon (Charged Particle) Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

19 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Super-Kamiokande Neutrino Detector 42 m 39.3 m

20 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Cherenkov Ring Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

21 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Super-Kamiokande: Sun in the Light of Neutrinos Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

22 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen SN 1987A Event No.9 in Kamiokande-II Kamiokande-II detector 2140 tons of water fiducial volume for SN 1987A Hirata et al., PRD 38 (1988) 448

23 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Signal of Supernova 1987A Within clock uncertainties, signals are contemporaneous Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

24 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen 2002 Physics Nobel Prize for Neutrino Astronomy Ray Davis Jr. ( ) Masatoshi Koshiba (*1926) for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos particular for the detection of cosmic neutrinos

25 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen SN 1987A Neutrino Story as Told by the Pioneers

26 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Some Particle-Physics Lessons from SN 1987A

27 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen The Energy-Loss Argument Neutrinosphere Neutrino Neutrino diffusion diffusion Late-time signal most sensitive observable Emission of very weakly interacting particles would steal energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) not sensitive to volume energy loss.) Volume emission Volume emission of novel particles of novel particles SN 1987A neutrino signal

28 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenDirectsearch Cold Dark Matter TelescopeExperiments Globular clusters (a- -coupling) Too many events Too much energy loss SN 1987A (a-N-coupling) Astrophysical Axion Bounds [GeV] f a [GeV] f aeVkeVmeV eV eV mamamama Hot dark matter limits (a- -coupling) CASTADMX

29 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Limits by Intrinsic Signal Dispersion Time of flight delay by neutrino mass (G. Zatsepin, JETP Lett. 8:205, 1968) Time of flight delay by neutrino mass (G. Zatsepin, JETP Lett. 8:205, 1968) m e 20 eV At the time of SN 1987A At the time of SN 1987A competitive with tritium end-point competitive with tritium end-point Today m < 2.2 eV from tritium Today m < 2.2 eV from tritium Cosmological limit today m 0.2 eV Cosmological limit today m 0.2 eV For milli charged neutrinos, path bent by galactic magnetic field, inducing a time delay Assuming charge conservation in neutron decay yields a more restrictive limit of about e Barbiellini & Cocconi, Barbiellini & Cocconi, Nature 329 (1987) 21 Nature 329 (1987) 21 Bahcall, Neutrino Astrophysics (1989) Bahcall, Neutrino Astrophysics (1989) Loredo & Lamb Ann N.Y. Acad. Sci. 571 (1989) 601 find 23 eV (95% CL limit) from detailed maximum-likelihood analysis

30 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Do Neutrinos Gravitate? Neutrinos arrive a few hours earlier than photons Early warning (SNEWS) SN 1987A: Transit time for photons and neutrinos equal to within ~ 3h Equal within ~ Shapiro time delay for particles moving in a gravitational potential Longo, PRL 60:173,1988 Krauss & Tremaine, PRL 60:176,1988 Proves directly that neutrinos respond to gravity in the usual way Proves directly that neutrinos respond to gravity in the usual way because for photons gravitational lensing already proves this point because for photons gravitational lensing already proves this point Cosmological limits N 1 much worse test of neutrino gravitation Cosmological limits N 1 much worse test of neutrino gravitation Provides limits on parameters of certain non-GR theories of gravitation Provides limits on parameters of certain non-GR theories of gravitation Photons likely obscured for next galactic SN, so this result probably Photons likely obscured for next galactic SN, so this result probably unique to SN 1987A unique to SN 1987A

31 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenCore-Collapse Explosion Mechanism

32 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Delayed Explosion Wilson, Proc. Univ. Illinois Meeting on Num. Astrophys.(1982) Bethe & Wilson, ApJ 295 (1985) 14

33 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino-Driven Delayed Explosion Picture adapted from Janka, astro-ph/ Picture adapted from Janka, astro-ph/ Neutrino heating increases pressure behind shock front

34 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Exploding Models (8-10 Solar Masses) with O-Ne-Cores Kitaura, Janka & Hillebrandt: Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae, astro-ph/

35 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Standing Accretion Shock Instability (SASI) Mezzacappa et al., Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

36 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Gravitational Waves from Core-Collapse Supernovae Müller, Rampp, Buras, Janka, & Shoemaker, Müller, Rampp, Buras, Janka, & Shoemaker, Towards gravitational wave signals from Towards gravitational wave signals from realistic core collapse supernova models, realistic core collapse supernova models, astro-ph/ astro-ph/ The gravitational-wave signal from convection is a generic and dominating feature Bounce Convection Asymmetric neutrino emission

37 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Galactic Supernova Rate

38 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Core-Collapse SN Rate in the Milky Way Gamma rays from 26 Al (Milky Way) Historical galactic SNe (all types) SN statistics in external galaxies No galactic neutrino burst Core-collapse SNe per century van den Bergh & McClure (1994) Cappellaro & Turatto (2000) Diehl et al. (2006) Tammann et al. (1994) Strom (1994) 90 % CL (25 y obserservation) Alekseev et al. (1993) References: van den Bergh & McClure, ApJ 425 (1994) 205. Cappellaro & Turatto, astro- ph/ Diehl et al., Nature 439 (2006) 45. Strom, Astron. Astrophys. 288 (1994) L1. Tammann et al., ApJ 92 (1994) 487. Alekeseev et al., JETP 77 (1993) 339 and my update.

39 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Local Group of Galaxies Events in a detector with Events in a detector with 30 x Super-K fiducial volume, 30 x Super-K fiducial volume, e.g. Hyper-Kamiokande e.g. Hyper-Kamiokande

40 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Nearby Galaxies with Many Observed Supernovae M83 (NGC 5236, Southern Pinwheel) D = 4.5 Mpc Observed Supernovae: Observed Supernovae: 1923A, 1945B, 1950B, 1923A, 1945B, 1950B, 1957D, 1968L, 1983N 1957D, 1968L, 1983N NGC 6946 D = (5.5 ± 1) Mpc Observed Supernovae: Observed Supernovae: 1917A, 1939C, 1948B, 1968D, 1917A, 1939C, 1948B, 1968D, 1969P, 1980K, 2002hh, 2004et 1969P, 1980K, 2002hh, 2004et

41 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Future Supernova Neutrino Observations

42 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Large Detectors for Supernova Neutrinos Super-Kamiokande (10 4 ) KamLAND (400) MiniBooNE(200) In brackets events for a fiducial SN at distance 10 kpc LVD (400) Borexino (100) IceCube (10 6 ) Baksan Baksan (100) (100)

43 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen SuperNova Early Warning System (SNEWS) Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments. BNL Super-K Alert Others ? LVD IceCube Supernova 1987A Early Light Curve

44 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Simulated Supernova Signal at Super-Kamiokande Simulation for Super-Kamiokande SN signal at 10 kpc, based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216] AccretionPhase Kelvin-Helmholtz Cooling Phase

45 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen IceCube Neutrino Telescope at the South Pole 1 km 3 antarctic ice, instrumented 1 km 3 antarctic ice, instrumented with 4800 photomultipliers with 4800 photomultipliers 22 of 80 strings installed (2007) 22 of 80 strings installed (2007) Completion until 2011 foreseen Completion until 2011 foreseen

46 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen IceCube as a Supernova Neutrino Detector Each optical module (OM) picks up Cherenkov light from its neighborhood. SN appears as correlated noise. About 300 About 300 Cherenkov Cherenkov photons photons per OM per OM from a SN from a SN at 10 kpc at 10 kpc Noise Noise per OM per OM < 260 Hz < 260 Hz Total of Total of 4800 OMs 4800 OMs in IceCube in IceCube IceCube SN signal at 10 kpc, based on a numerical Livermore model [Dighe, Keil & Raffelt, hep-ph/ ] Method first discussed by Pryor, Roos & Webster, Pryor, Roos & Webster, ApJ 329:355 (1988) ApJ 329:355 (1988) Halzen, Jacobsen & Zas Halzen, Jacobsen & Zas astro-ph/ astro-ph/

47 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen LAGUNA - Funded FP7 Design Study Large Apparati for Grand Unification and Neutrino Astrophysics (see also arXiv: )

48 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenSupernova Neutrino Oscillations

49 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Flavor Oscillations Two-flavor mixing Bruno Pontecorvo (1913 – 1993) Invented nu oscillations Each mass eigenstate propagates as with Phase difference implies flavor oscillations OscillationLength sin 2 (2 ) Probability e Probability e z

50 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Mixing of Neutrinos with Different Mass Electronneutrino Neutrino mass m 1 Neutrino mass m 2 Neutrino propagation as a wave phenomenon Mass m 1 Mass m 2 = m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Mass m 1 Mass m 2 > m 1 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

51 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Oscillations Mass m 1 Mass m 2 > m 1 Oscillation length Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

52 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Oscillations Oscillation length Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen

53 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Three-Flavor Neutrino Parameters CP-violating phase CP-violating phase Solar Atmospheric CHOOZSolar/KamLAND 2 ranges hep-ph/ Atmospheric/K2K e e 1 SunNormal2 3 Atmosphere e e 1 SunInverted2 3 Atmosphere Tasks and Open Questions Precision for 12 and 23 Precision for 12 and 23 How large is 13 ? How large is 13 ? CP-violating phase ? CP-violating phase ? Mass ordering ? Mass ordering ? (normal vs inverted) (normal vs inverted) Absolute masses ? Absolute masses ? (hierarchical vs degenerate) (hierarchical vs degenerate) Dirac or Majorana ? Dirac or Majorana ?

54 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Long-Baseline Experiment K2K K2K Experiment (KEK to Kamiokande) Kamiokande) has confirmed neutrinooscillations, to be followed by T2K (2009)

55 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen The Future: A Megatonne Detector? Megatonne detector motivated by Long baseline neutrino oscillations Long baseline neutrino oscillations Proton decay Proton decay Atmospheric neutrinos Atmospheric neutrinos Solar neutrinos Solar neutrinos Supernova neutrinos Supernova neutrinos (~10 5 events for SN at 10 kpc) (~10 5 events for SN at 10 kpc) Similar discussions in US (UNO project) US (UNO project) Europe (MEMPHYS project) Europe (MEMPHYS project)

56 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Neutrino Oscillations in Matter Level crossing possible in a medium with a gradient (MSW effect) Level crossing possible in a medium with a gradient (MSW effect) - For solar nus large flavor conversion anyway due to large mixing - For solar nus large flavor conversion anyway due to large mixing - Still important for 13-oscillations in supernova envelope - Still important for 13-oscillations in supernova envelope Breaks degeneracy between and /2 (dark vs light side) Breaks degeneracy between and /2 (dark vs light side) - 12 mass ordering for solar nus established - 12 mass ordering for solar nus established - 13 mass ordering (normal vs inverted) at future LBL or SN - 13 mass ordering (normal vs inverted) at future LBL or SN Discriminates against sterile nus in atmospheric oscillations Discriminates against sterile nus in atmospheric oscillations CP asymmetry in LBL, to be distinguished from intrinsic CP violation CP asymmetry in LBL, to be distinguished from intrinsic CP violation Prevents flavor conversion in a SN core and within shock wave Prevents flavor conversion in a SN core and within shock wave Strongly affects sterile nu production in SN or early universe Strongly affects sterile nu production in SN or early universe Lincoln Wolfenstein f Z W, Z f Neutrinos in a medium suffer flavor-dependent refraction (PRD 17:2369, 1978) In Earth or Sun weak potential of order eV

57 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen H- and L-Resonance for MSW Oscillations R. Tomàs, M. Kachelriess, G. Raffelt, A. Dighe, H.-T. Janka & L. Scheck: Neutrino signatures of supernova forward and reverse shock propagation [astro-ph/ ] Resonance density for Resonance

58 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Shock-Wave Propagation in IceCube Choubey, Harries & Ross, Probing neutrino oscillations from supernovae shock waves via the IceCube detector, astro-ph/ Normal Hierarchy Inverted Hierarchy No shockwave Inverted Hierarchy Forward shock Inverted Hierarchy Forward & reverse shock

59 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Matrices of Density in Flavor Space Neutrino quantum field Neutrino quantum field Spinors in flavor space Spinors in flavor space Quantum states (amplitudes) Variables for discussing neutrino flavor oscillations Matrices of densities (analogous to occupation numbers) Quadratic quantities, required for dealing with decoherence, collisions, Pauli-blocking, nu-nu-refraction, etc. Sufficient for beam experiments, but confusing wave packet debates for quantifying decoherence effects Destruction operators for (anti)neutrinos Neutrinos Anti-neutrinos

60 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen General Equations of Motion Usual matter effect with Vacuum oscillations Vacuum oscillations M is neutrino mass matrix M is neutrino mass matrix Note opposite sign between Note opposite sign between neutrinos and antineutrinos neutrinos and antineutrinos Nonlinear nu-nu effects are important when nu-nu interaction energy exceeds typical vacuum oscillation frequency (Do not compare with matter effect!)

61 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Toy Supernova in Single-Angle Approximation Bipolar Oscillations Assume 80% anti-neutrinos Assume 80% anti-neutrinos Vacuum oscillation frequency Vacuum oscillation frequency = 0.3 km 1 = 0.3 km 1 Neutrino-neutrino interaction Neutrino-neutrino interaction energy at nu sphere (r = 10 km) energy at nu sphere (r = 10 km) = km 1 = km 1 Falls off approximately as r 4 Falls off approximately as r 4 (geometric flux dilution and nus (geometric flux dilution and nus become more co-linear) become more co-linear) Decline of oscillation amplitude explained in pendulum analogy by inreasing moment of inertia (Hannestad, Raffelt, Sigl & Wong astro-ph/ ) astro-ph/ )

62 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Collective SN neutrino oscillations Bipolar collective transformations important, even for dense matter Duan, Fuller & Qian Duan, Fuller & Qian astro-ph/ astro-ph/ Numerical simulations Including multi-angle effects Including multi-angle effects Discovery of spectral splits Discovery of spectral splits Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ , astro-ph/ , Pendulum in flavor space Pendulum in flavor space Collective pair annihilation Collective pair annihilation Pure precession mode Pure precession mode Hannestad, Raffelt, Sigl & Wong Hannestad, Raffelt, Sigl & Wong astro-ph/ astro-ph/ Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian astro-ph/ astro-ph/ Self-maintained coherence vs. self-induced decoherence caused by multi-angle effects Raffelt & Sigl, hep-ph/ Raffelt & Sigl, hep-ph/ Esteban-Pretel, Pastor, Tomas, Esteban-Pretel, Pastor, Tomas, Raffelt & Sigl, arXiv: Raffelt & Sigl, arXiv: Theory of spectral splits in terms of adiabatic evolution in rotating frame Raffelt & Smirnov, Raffelt & Smirnov, arXiv: , arXiv: , Duan, Fuller, Carlson & Qian Duan, Fuller, Carlson & Qian arXiv: , arXiv: , Independent numerical simulations Fogli, Lisi, Marrone & Mirizzi Fogli, Lisi, Marrone & Mirizzi arXiv: arXiv:

63 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Supernova Neutrinos 20 Jahre nach SN 1987A Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Cosmic Diffuse Supernova Neutrino Background (DSNB)

64 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Diffuse Background Flux of SN Neutrinos 1 SNu ~ 4 L / L,B Average neutrino luminosity of galaxies ~ photon luminosity 1 SNu = 1 SN / L sun,B / 100 years 1 SNu = 1 SN / L sun,B / 100 years L sun,B = 0.54 L sun = erg/s L sun,B = 0.54 L sun = erg/s E ~ erg per core-collapse SN E ~ erg per core-collapse SN For galaxies, average nuclear & gravitational energy release comparable Photons come from nuclear energy Photons come from nuclear energy Neutrinos from gravitational energy Neutrinos from gravitational energy Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe, Present-day SN rate of ~ 1 SNu, extrapolated to the entire universe, corresponds to e flux of ~ 1 cm 2 s 1 corresponds to e flux of ~ 1 cm 2 s 1 Realistic flux is dominated by much larger early star-formation rate Realistic flux is dominated by much larger early star-formation rate Upper limit ~ 54 cm 2 s 1 Upper limit ~ 54 cm 2 s 1 [Kaplinghat et al., astro-ph/ ] [Kaplinghat et al., astro-ph/ ] Realistic estimate ~ 10 cm 2 s 1 Realistic estimate ~ 10 cm 2 s 1 [Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] [Hartmann & Woosley, Astropart. Phys. 7 (1997) 137] Measurement would tell us about early history of star formation Measurement would tell us about early history of star formation

65 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Experimental Limits on Relic Supernova Neutrinos Cline, astro-ph/ Upper-limit flux of Upper-limit flux of Kaplinghat et al., Kaplinghat et al., astro-ph/ astro-ph/ Integrated 54 cm -2 s -1 Integrated 54 cm -2 s -1 Super-K upper limit Super-K upper limit 29 cm -2 s -1 for 29 cm -2 s -1 for Kaplinghat et al. spectrum Kaplinghat et al. spectrum [hep-ex/ ] [hep-ex/ ]

66 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Improved Sensitivity with Neutron Tagging Detection of DSNB limited by Solar neutrinos for E 18 MeV Solar neutrinos for E 18 MeV Sub-Cherenkov muons from atm nus Sub-Cherenkov muons from atm nus Solution: neutron tagging from Solution: neutron tagging from 2.2 MeV gamma from n + p d 2.2 MeV gamma from n + p d invisible in water Cherenkov detector invisible in water Cherenkov detector Add gadolinium to Super-Kamiokande Efficient neutron capture on Gd Efficient neutron capture on Gd 8 MeV gamma cascade easily visible 8 MeV gamma cascade easily visible 0.1% (100 tons of Gd Cl 3 ) 0.1% (100 tons of Gd Cl 3 ) achieves 90% tagging efficiency achieves 90% tagging efficiency Diffuse SN nu background (DSNB): Diffuse SN nu background (DSNB): a few events per year in Super-K a few events per year in Super-K with no background at all with no background at all Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93 (2004) ] Status of R & D (04/2006) [Mark Vagins, private communication] Nov 05: Gd Cl 3 added to K2K test tank (kiloton or KT detector) Gd Cl 3 is easy to dissolve Gd Cl 3 is easy to dissolve Gd Cl 3 does not significantly affect Gd Cl 3 does not significantly affect the light collection the light collection Choice of detector materials critical Choice of detector materials critical (old rust in KT with Gd Cl 3 badly (old rust in KT with Gd Cl 3 badly affected transparency) affected transparency) The 20 inch Super-K PMT's operate The 20 inch Super-K PMT's operate well in conductive water well in conductive water Gd filtration works as designed at Gd filtration works as designed at 3.6 tons/h, can easily be scaled up 3.6 tons/h, can easily be scaled up Looks promising for Super-K, Looks promising for Super-K, conceivable within next few years conceivable within next few years Capital cost negligible for future Capital cost negligible for future megatonne-class detectors megatonne-class detectors

67 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen DSNB Measurement with Neutron Tagging Beacom & Vagins, hep-ph/ [Phys. Rev. Lett., 93:171101, 2004] Pushing the boundaries of neutrino astronomy to cosmological distances Future large-scale scintillator detectors (e.g. LENA with 50 kt) Inverse beta decay reaction tagged Inverse beta decay reaction tagged Location with smaller reactor flux Location with smaller reactor flux (e.g. Pyhäsalmi in Finland) could (e.g. Pyhäsalmi in Finland) could allow for lower threshold allow for lower threshold

68 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen The Red Supergiant Betelgeuse (Alpha Orionis) First resolved image of a star other than Sun Distance(Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: neutrino events in Super-Kamiokande neutrino events in Super-Kamiokande neutron events per day from Silicon-burning phase neutron events per day from Silicon-burning phase (few days warning!), need neutron tagging (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ] [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]

69 Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH Aachen Aachen Skyline Looking forward to the next galactic supernova!


Herunterladen ppt "Georg Raffelt, Max-Planck-Institut für Physik, München Physik Kolloquium, 19. November 2007, RWTH AachenTitle Georg Raffelt, Max-Planck-Institut für Physik,"

Ähnliche Präsentationen


Google-Anzeigen