Präsentation herunterladen
Die Präsentation wird geladen. Bitte warten
1
Algorithmen und Datenstrukturen
Hashing Informatik II, SS 2008 Algorithmen und Datenstrukturen Vorlesung 14 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg
2
Das Wörterbuch-Problem (1)
Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben werden: Gegeben: Menge von Objekten (Daten) die über einen eindeutigen Schlüssel (ganze Zahl, String, ) identifizierbar sind. Gesucht: Struktur zu Speicherung der Objektmenge, so dass mindestens die folgenden Operationen (Methoden) effizient ausführbar sind: • Suchen (Wiederfinden, Zugreifen) • Einfügen • Entfernen Bedingungen, die die Wahl einer Lösung des WBP beeinflussen: Ort, wo die Daten gespeichert sind (Hauptspeicher, Platte, Band, CD,…) Art- und Häufigkeit der auszuführenden Operationen Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
3
Das Wörterbuch-Problem (2)
Häufigkeit der Operationen: – überwiegend Einfügen & Löschen (dynamisches Verhalten) – überwiegend Suchen (statisches Verhalten) – annähernd Gleichverteilung – nichts bekannt Weitere zu implementierende Operationen: – Durchlaufen der Menge in bestimmter Reihenfolge (etwa nach Schlüsselwert aufsteigend) – Mengen-Operationen: Vereinigung, Durchschnitt, Differenz, – Aufspalten – Konstruieren Kostenmaße zur Beurteilung der Lösung: average, worst, amortisierter worst case Ausführungsreihenfolge der Operationen: – sequentiell – nebenläufig Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
4
Das Wörterbuch-Problem (3)
Verschiedene Ansätze zur Lösung des WBP: Aufteilung des gesamten Schlüssel-Universums: Hashing Strukturierung der aktuellen Schlüsselmange: Listen, Bäume, Graphen, . . . Hashing (engl.: to hash=zerhacken) beschreibt eine spezielle Art der Speicherung der Elemente einer Menge durch Zerlegung des Schlüssel-Universums. Die Position des Daten-Elements im Speicher ergibt sich (zunächst) durch Berechnung direkt aus dem Schlüssel. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
5
Hashverfahren Annahme: Daten sind über einen ganzzahligen Schlüssel eindeutig identifizierbar. Suchen, Einfügen, Entfernen von Datensätzen (Schlüsseln) soll unterstützt werden. Ort des Datensatzes d: Berechnung aus dem Schlüssel s von d keine Vergleiche konstante Zeit Datenstruktur: lineares Feld (Array) der Größe m Hashtabelle Schlüssel s i m-2 m-1 …………. …………. Der Speicher wird zerlegt in m gleich große Behälter (Buckets). Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
6
Implementierung in Java
class TableEntry { private Object key,value; } abstract class HashTable { private TableEntry[] tableEntry; private int capacity; //Konstruktor HashTable (int capacity) { this.capacity = capacity; tableEntry = new TableEntry [capacity]; for (int i = 0; i <= capacity-1; i++) tableEntry[i] = null; } // die Hashfunktion protected abstract int h (Object key); /* fuege Element mit Schluessel key und Wert value ein (falls nicht vorhanden) */ public abstract void insert (Object key Object value); // entferne Element mit Schluessel key (falls vorhanden) public abstract void delete (Object key); // suche Element mit Schluessel key public abstract Object search (Object key); } // class hashTable Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
7
Hashverfahren - Probleme
Größe der Hashtabelle Nur eine kleine Teilmenge S aller möglichen Schlüssel (des Universums) U kommt vor Berechnung der Adresse eines Datensätzen - Schlüssel sind keine ganzen Zahlen - Index hängt von der Größe der Hashtabelle ab In Java: public class Object { public int hashCode() {…} } Das Universum U sollte möglichst gleichmäßig auf die Zahlen -231,…,231-1 verteilt werden Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
8
Hashfunktion (1) Schlüsselmenge S Hashfunktion h
Univer- sum U aller mög- lichen Schlüs- sel 0,…,m-1 Hashtabelle T h(s) = Hashadresse h(s) = h(s´) s und s´ sind Synonyme bzgl. h Adresskollision Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
9
Hashfunktion (2) Definition: Sei U ein Universum möglicher Schlüssel und {B0, ,Bm-1} eine Menge von m Behältern zum Speichern von Elementen aus U: Dann ist eine Hash-Funktion eine totale Abbildung h : U {0, ,m - 1} , die jedem Schlüssel s aus U eine Nummer h(s) (und dem entsprechenden Element den Behälter Bh(s) ) zuordnet. Die Behälter-Nummern nennt man auch Hash-Adressen, die Gesamtmenge der Behälter Hash-Tabelle. B0 B1 … … Bm-1 Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
10
Adresskollisionen Eine Hashfunktion h berechnet für jeden Schlüssel s die Nummer des Buckets. Ideal wäre eine eindeutige Speicher-Zuordnung eines Datums mit Schlüssel s zum Bucket mit Nummer h(s): Einfügen und Suchen könnten dann in konstanter Zeit (O(1)) erfolgen. Tatsächlich treten natürlich Kollisionen auf: Mehrere Elemente können auf die gleiche Hash-Adresse abgebildet werden. Kollisionen müssen (auf eine von verschiedenen Arten) behandelt werden. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
11
Hashverfahren Beispiel für U: alle Namen in Java mit Länge ≤ 40 |U | = 6240 Falls |U | > m : Adresskollisionen unvermeidlich Hashverfahren: 1. Wahl einer möglichst „guten“ Hash-Funktion 2. Strategie zur Auflösung von Adresskollisionen Belegungsfaktor : Annahme: Tabellengröße m ist fest Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
12
Anforderungen an gute Hashfunktionen
Eine Kollision tritt dann auf, wenn bei Einfügen eines Elementes mit Schlüssel s der Bucket Bh(s) schon belegt ist. Eine Hash-Funktion h heißt perfekt für eine Menge von Schlüsseln S, falls keine Kollisionen für S auftreten. Ist h perfekt und |S| = n, dann gilt: n ≤ m. Der Belegungsfaktor (BF) der Hash-Tabelle ist n/m ≤ 1. Eine Hash-Funktion ist gut gewählt, wenn – der Belegungsfaktor möglichst hoch ist, – für viele Schlüssel-Mengen die # der Kollisionen möglichst klein ist, – sie effizient zu berechnen ist. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
13
Beispiel einer Hashfunktion
Beispiel: Hash-Funktion für Strings public static int h (String s){ int k = 0, m = 13; for (int i=0; i < s.length(); i++) k += (int)s.charAt (i); return ( k%m ); } Folgende Hash-Adressen werden generiert für m = 13. Schlüssel s h(s) Test Hallo 2 SE Algo 10 h wird perfekter, je größer m gewählt wird. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
14
Kollisionswahrscheinlichkeit (1)
Zur Wahl der Hash-Funktion Die Anforderungen hoher Belegungsfaktor und Kollisionsfreiheit stehen in Konflikt zueinander. Es ist ein geeigneter Kompromiss zu finden. Für die Schlüssel-Menge S mit |S| = n und Behälter B0, , Bm-1 gilt: – für n > m sind Konflikte unausweichlich – für n < m gibt es eine (Rest-) Wahrscheinlichkeit PK(n,m) für das Auftreten mindestens einer Kollision. Wie findet man Abschätzung für PK(n,m)? Für beliebigen Schlüssel s ist die W’keit dafür, dass h(s) = j mit j {0, ,m - 1}: PK [h(s) = j ] = 1/m, falls Gleichverteilung gilt. Es ist PK(n,m) = 1 - P¬K(n,m), wenn P¬K(n,m) die W’keit dafür ist, dass es beim Speichern von n Elementen in m Behälter zu keinen Kollisionen kommt. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
15
Kollisionswahrscheinlichkeit (2)
Zur Wahrscheinlichkeit von Kollisionen Werden n Schlüssel nacheinander auf die Behälter B0, , Bm-1 verteilt (bei Gleichverteilung), gilt jedes mal P [h(s) = j ] = 1/m. Die W’keit P(i) für keine Kollision im Schritt i ist P(i) = (m - (i - 1))/m Damit ist Für m = 365 etwa ist P(23) > 50% und P(50) 97% (Geburtstagsparadoxon) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
16
Gebräuchliche Hashfunktionen
In der Praxis verwendete Hash-Funktionen: Siehe: D.E. Knuth: The Art of Computer Programming Für U = integer wird die Divisions-Rest-Methode verwandt: h(s) = (a × s) mod m (a 0, a m, m Primzahl) Für Zeichenreihen der Form s = s0s sk-1 nimmt man etwa: etwa mit B = 131 und w = Wortbreite des Rechners (w = 32 oder w = 64 ist üblich). Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
17
Einfache Hashfunktion
Wahl der Hash-Funktion - leichte und schnelle Berechenbarkeit - gleichmäßige Verteilung der Daten (Beispiel: Compiler) (Einfache) Divisions-Rest-Methode h(k) = k mod m Wahl von m? Beispiele: a) m gerade h(k) gerade k gerade Problematisch, wenn letztes Bit Sachverhalt ausdrückt (z.B. 0 = weiblich, 1 = männlich) b) m = 2p liefert p niedrigsten Dualziffern von k Regel: Wähle m prim, wobei m keine Zahl ri +- j teilt, wobei i und j kleine, nichtnegative Zahlen und r Radix der Darstellung sind. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
18
Multiplikative Methode
Wähle eine irrationale Zahl Berechne h(k) = [m (k mod 1) ] Berechnung von h(k) : Wahl von m unkritisch, wähle m = 2p k 0, r0 r1 p Bits = h(k) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
19
Universelles Hashing Idee : Wähle Hashfunktion h zufällig aus einer sorgfältig definierten endlichen Menge H von Hashfunktionen, und zwar so dass für eine zufällig gewählte Funktion h H gilt: Die Wahrscheinlichkeit dafür, dass h für zwei beliebige Elemente x und y aus dem Universum U eine Adresskollision verursacht, ist 1/m, m = Größe der Hashtabelle. Beispiel für eine universelle Klasse von Hashfunktionen: |U| = p mit Primzahl p und |U| = {0,…,p-1} Seien a {1,…,p-1} und b {0,…,p-1} und ha,b : U {0,…,m-1} wie folgt definiert ha,b = ((ax+b)mod p) mod m Folgerung: Die Menge H = {ha,b | 1 ≤ a ≤ p,0 ≤ b ≤ p} ist eine universelle Klasse von Hashfunktionen. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
20
Möglichkeiten der Kollisionsbehandlung
Die Behandlung von Kollisionen erfolgt bei verschiedenen Verfahren unterschiedlich. Ein Datensatz mit Schlüssel s ist ein Überläufer, wenn der Behälter h(s) schon durch einen anderen Satz belegt ist. Wie kann mit Überläufern verfahren werden? 1. Behälter werden durch verkettete Listen realisiert. Überläufer werden in diesen Listen abgespeichert. Chaining (Hashing mit Verkettung der Überläufer) 2. Überläufer werden in noch freien anderen Behältern abgespeichert. Diese werden beim Speichern und Suchen durch sogenanntes Sondieren gefunden. Open Addressing (Offene Hashverfahren) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
21
Verkettung der Überläufer (1)
Die Hash-Tabelle ist ein Array (Länge m) von Listen. Jeder Behälter wird durch eine Liste realisiert. class hashTable { Liste [] ht; // ein Listen-Array hashTable (int m){ // Konstruktor ht = new Liste[m]; for (int i = 0; i < m; i++) ht[i] = new Liste(); // Listen-Erzeugung } } Zwei verschiedene Möglichkeiten der Listen-Anlage: 1. Hash-Tabelle enthält nur Listen-Köpfe, Datensätze sind in Listen: Direkte Verkettung 2. Hash-Tabelle enthält pro Behälter maximal einen Datensatz sowie einen Listen-Kopf. Überläufer kommen in die Liste: Separate Verkettung Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
22
Hashing mit Verkettung der Überläufer
Schlüssel werden in Überlauflisten gespeichert h(k) = k mod 7 Haschtabelle T Zeiger 53 12 15 2 43 5 Überläufer 19 Diese Art der Verkettung wird auch als direkte Verkettung bezeichnet. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
23
Verkettung der Überläufer
Suchen nach Schlüssel k - Berechne h(k) und Überlaufliste T[h(k)] - Suche nach k in der Überlaufliste Einfügen eines Schlüssels k - Suchen nach k (erfolglos) - Einfügen in die Überlaufliste Entfernen eines Schlüssels k - Suchen nach k (erfolgreich) - Entfernen aus Überlaufliste Reine Listenoperationen Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
24
Analyse der direkten Verkettung
Uniform-Hashing Annahme: alle Hashadressen werden mit gleicher Wahrscheinlichkeit gewählt, d.h.: Pr(h(ki) = j) = 1/m unabhängig von Operation zu Operation Mittlere Kettenlänge bei n Einträgen: n/m = Definition C´n = Erwartungswert für die Anzahl betrachteter Einträge bei erfolgloser Suche Cn = Erwartungswert für die Anzahl betrachteter Einträge bei erfolgreicher Suche Analyse Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
25
Verkettung der Überläufer
Vorteile: + Cn und C´n niedrig + > 1 möglich + echte Entfernungen + für Sekundärspeicher geeignet Effizienz der Suche Cn (erfolgreich) C´n (erfolglos) Nachteile - Zusätzlicher Speicherplatz für Zeiger - Überläufer außerhalb der Hashtabelle Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
26
Analyse Hashing mit Verkettung
worst case: h(s) liefert immer den gleichen Wert, alle Datensätze sind in einer Liste. Verhalten wie bei Linearer Liste. average case: – Erfolgreiche Suche & Entfernen: Aufwand in Datenzugriffen × BF – Erfolglose Suche & Einfügen: Aufwand BF Das gilt für direkte Verkettung, bei separater Verkettung ist der Aufwand jeweils etwas höher. best case: Die Suche hat sofort Erfolg. Aufwand O(1). Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
27
Offene Hashverfahren Idee: Unterbringung der Überläufer an freien (“offenen”) Plätzen in Hashtabelle Falls T[h(k)] belegt, suche anderen Platz für k nach fester Regel Beispiel: Betrachte Eintrag mit nächst kleinerem Index: (h(k) - 1) mod m Allgemeiner: Betrachte die Folge (h(k) - j) mod m j = 0,…,m-1 h(k) m-2 m-1 … …. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
28
Sondierungsfolgen Noch allgemeiner: Betrachte Sondierungsfolge
(h(k) – s(j,k)) mod m j = 0,...,m-1, für eine gegebene Funktion s(j,k) Beispiele für die Funktion s(j,k) = j (lineares Sondieren) s(j,k) = (-1)j * j/22 (quadratisches Sondieren) s(j,k) = j * h´(k) (Double Hashing) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
29
Sondierungsfolgen Eigenschaften von s(j,k)
Folge (h(k) – s(0,k)) mod m, (h(k) – s(1,k)) mod m, (h(k) – s(m-2,k)) mod m, (h(k) – s(m-1,k)) mod m sollte eine Permutation von 0,...,m-1 liefern. Beispiel: Quadratisches Sondieren Kritisch: Entfernen von Sätzen als entfernt markieren (Einfügen von 4, 18, 25, Löschen 4, Suche 18, 25) h(11) = 4 s(j,k) = -1,1,-4,4,-9,9 Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
30
Offene Hashverfahren class OpenHashTable extends HashTable { // in HashTable: TableEntry [] T; private int [] tag; static final int EMPTY = 0; // Frei static final int OCCUPIED = 1; // Belegt static final int DELETED = 2; // Entfernt // Konstruktor OpenHashTable (int capacity) { super(capacity); tag = new int [capacity]; for (int i = 0; i < capacity; i++) { tag[i] = EMPTY; } } // Die Hashfunktion protected int h (Object key) {...} // Funktion s für Sondierungsfolge protected int s (int j, Object key) { // quadratisches Sondieren if (j % 2 == 0) return ((j + 1) / 2) * ((j + 1) / 2); else return -((j + 1) / 2) * ((j + 1) / 2); } Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
31
Offene Hashverfahren - Suchen
public int searchIndex (Object key) { /* sucht in der Hashtabelle nach Eintrag mit Schluessel key und liefert den zugehoerigen Index oder -1 zurueck */ int i = h(key); int j = 1; // naechster Index der Sondierungsfolge while (tag[i] != EMPTY &&!key.equals(T[i].key)){ // Naechster Eintr. in Sondierungsfolge i = (h(key) - s(j++, key)) % capacity; if (i < 0) i = i + capacity; } if (key.equals(T[i].key) && tag[i] == OCCUPIED) return i; else return -1; } public Object search (Object key) { /* sucht in der Hashtabelle nach Eintrag mit Schluessel key und liefert den zugehoerigen Wert oder null zurueck */ int i = searchIndex (key); if (i >= 0) return T[i].value; else return null; } Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
32
Offene Hashverfahren - Einfügen
public void insert (Object key, Object value) { // fuegt einen Eintrag mit Schluessel key und Wert value ein int j = 1; // naechster Index der Sondierungsfolge int i = h(key); while (tag[i] == OCCUPIED) { i = (h(key) - s(j++, key)) % capacity; if (i < 0) i = i + capacity; } T[i] = new TableEntry(key, value); tag[i] = OCCUPIED; } Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
33
Offene Hashverfahren - Entfernen
public void delete (Object key) { // entfernt Eintrag mit Schluessel key aus der Hashtabelle int i = searchIndex(key); if (i >= 0) { // Suche erfolgreich tag[i] = DELETED; } } Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
34
Test-Programm public class OpenHashingTest { public static void main(String args[]) { Integer[] t= new Integer[args.length]; for (int i = 0; i < args.length; i++) t[i] = Integer.valueOf(args[i]); OpenHashTable h = new OpenHashTable (7); for (int i = 0; i <= t.length - 1; i++) { h.insert(t[i], null);# h.printTable (); } h.delete(t[0]); h.delete(t[1]); h.delete(t[6]); h.printTable(); } } Aufruf: java OpenHashingTest Ausgabe (Quadratisches Sondieren): [ ] [ ] [ ] [ ] [ ] (12) [ ] [ ] [ ] [ ] [ ] (53) (12) [ ] [ ] [ ] [ ] [ ] (53) (12) (5) [ ] (15) [ ] [ ] (53) (12) (5) [ ] (15) (2) [ ] (53) (12) (5) (19) (15) (2) [ ] (53) (12) (5) (19) (15) (2) (43) (53) (12) (5) (19) (15) (2) {43} {53} {12} (5) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
35
Sondierungsfolgen - Lineares Sondieren
s(j,k) = j Sondierungsfolge für k: h(k), h(k)-1,...,0,m-1,..., h(k)+1, Problem: primäre Häufung (“primary clustering”) Pr (nächstes Objekt landet an Position 2) = 4/7 Pr (nächstes Objekt landet an Position 1) = 1/7 Lange Ketten werden mit größerer Wahrscheinlichkeit verlängert als kurze. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
36
Effizienz des linearen Sondierens
erfolgreiche Suche: erfolglose Suche: Cn (erfolgreich) C´n(erfolglos) Effizienz des linearen Sondierens verschlechtert sich drastisch, sobald sich der Belegungsfaktor dem Wert 1 nähert. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
37
Quadratisches Sondieren
s(j,k) = (-1)j * j/22 Sondierungsfolge für k: h(k), h(k)+1, h(k)-1, h(k)+4, ... Permutation, falls m = 4l + 3 eine Primzahl ist. Problem: sekundäre Häufung, d.h. zwei Synonyme k und k´ durchlaufen stets dieselbe Sondierungsfolge. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
38
Effizienz des quadratischen Sondierens
erfolgreiche Suche: erfolglose Suche: Cn (erfolgreich) C´n(erfolglos) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
39
Uniformes Sondieren s(j,k) = πk(j)
πk eine der m! Permutationen von {0,...,m-1} - hängt nur von k ab - gleichwahrscheinlich für jede Permutation Cn (erfolgreich) C´n(erfolglos) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
40
Zufälliges Sondieren Realisierung von uniformem Sondieren sehr aufwendig. Alternative: Zufälliges Sondieren s(j,k) = von k abhängige Zufallszahl s(j,k) = s(j´,k) möglich, aber unwahrscheinlich Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
41
Double Hashing Idee: Wähle zweite Hashfunktion h´ s(j,k) = j*h´(k)
Sondierungsfolge für k: h(k), h(k)-h´(k), h(k)-2h´(k),... Forderung: Sondierungsfolge muss Permutation der Hashadressen entsprechen. Folgerung: h´(k) ≠ 0 und h´(k) kein Teiler von m, d.h. h´(k) teilt m nicht. Beispiel: h´(k) = 1 + (k mod (m-2)) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
42
Beispiel Hashfunktionen: h(k) = k mod 7 h´(k) = 1 + k mod 5
Schlüsselfolge: 15, 22, 1, 29, 26 In diesem Beispiel genügt fast immer einfaches Sondieren. Double Hashing ist genauso effizient wie uniformes Sondieren. Double Hashing ist leichter zu implementieren. 15 h´(22) = 3 h´(1) = 2 h´(29) = 5 h´(26) = 2 Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
43
Verbesserung der erfolgreichen Suche - Motivation
Hashtabelle der Größe 11, Double Hashing mit h(k) = k mod 11 und h´(k) = 1 + (k mod (11 – 2)) = 1 + (k mod 9) Bereits eingefügt: 22, 10, 37, 47, 17 Noch einzufügen: 6 und 30 h(6) = 6, h´(6) = = 7 h(30) = 8, h´(30) = = 4 Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
44
Verbesserung der erfolgreichen Suche: Allgemein
Einfügen: - k trifft in T[i] auf kalt, d.h. i = h(k) - s(j,k) = h(kalt) - s(j´,kalt) - kalt bereits in T[i] gespeichert Idee: Suche freien Platz für k oder kalt Zwei Möglichkeiten: (M1) kalt bleibt in T[i] betrachte neue Position h(k) - s(j+1,k) für k (M2) k verdrängt kalt betrachte neue Position h(kalt) - s(j´+1, kalt) für kalt if (M1) or (M2) trifft auf einen freien Platz then trage entsprechenden Schlüssel ein fertig else verfolge (M1) oder (M2) weiter Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
45
Verbesserung der erfolgreichen Suche
Brent’s Verfahren: verfolge nur (M1) k trifft auf k´ k´ weicht aus k weicht aus k trifft auf k´´ fertig k´´ weicht aus k weicht aus k trifft auf k´´´ fertig k´´´ weicht aus k trifft auf k´´´´ fertig Binärbaum Sondieren: verfolge (M1) und (M2) Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
46
Verbesserung der erfolgreichen Suche
Problem: kalt von k verdrängt: nächster Platz in Sondierungsfolge für kalt? Ausweichen von kalt einfach, wenn gilt: s(j, kalt) - s(j -1, kalt) = s(1,kalt) für alle 1 ≤ j ≤ m -1. Das gilt beispielsweise für lineares Sondieren und double Hashing. Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
47
Beispiel Hashfunktionen: h(k) = k mod 7 h´(k) = 1 + k mod 5
Schlüsselfolge: 12, 53, 5, 15, 2, 19 h(5) = 5 belegt k´= 12 Betrachte: h´(k) = 1 h(5) -1 * h´(5) 5 verdrängt 12 von seinem Platz Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
48
Verbesserung der erfolglosen Suche
Suche nach k: k´>k in Sondierungsfolge: Suche erfolglos Einfügen: kleinere Schlüssel verdrängen größere Schlüssel Invariante: Alle Schlüssel in der Sondierungsfolge vor k sind kleiner als k (aber nicht notwendigerweise aufsteigend sortiert) Probleme: Verdrängungsprozess kann “Kettenreaktion” auslösen k´ von k verdrängt: Position von k´ in Sondierungsfolge? Es muss gelten: s(j,k) - s(j -1,k) = s(1,k), 1 ≤ j ≤ m Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
49
Ordered Hashing Suchen
Input: Schlüssel k Output: Information zu Datensatz mit Schlüssel k oder null Beginne bei i h(k) while T[i] nicht frei and T[i] .k < k do i (i – s(1,k)) mod m end while; if T[i] belegt and T[i] .k = k then Suche erfolgreich else Suche erfolglos Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
50
Ordered Hashing Einfügen
Input: Schlüssel k Beginne bei i h(k) while T[i] nicht frei and T[i] .k ≠ k do if k < T[i].k then if T[i] ist entfernt then exit while-loop else // k verdrängt T[i].k vertausche T[i].k mit k i = (i – s(1,k)) mod m end while; if T[i] ist nicht belegt then trage k bei T[i] ein Informatik II: Algorithmen und Datenstrukturen, SS 2008 Prof. Dr. Thomas Ottmann
Ähnliche Präsentationen
© 2025 SlidePlayer.org Inc.
All rights reserved.