Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Urknall oder Neutronenstern ?

Ähnliche Präsentationen


Präsentation zum Thema: "Urknall oder Neutronenstern ?"—  Präsentation transkript:

1 Urknall oder Neutronenstern ?
Experimente mit exotischer Kernmaterie an FAIR Peter Senger, GSI, Wissenschaft für Alle, 1. Bausteine der (Kern)-Materie:  Quarks und Gluonen, die Elementarteilchen der Starken Kraft 2. Rätsel der Starken Kraft:  Die Gefangenschaft der Quarks  Der Ursprung der Masse 3. Exotische Kernmaterie im Kosmos 4. Experimente mit heißer und dichter Kernmaterie im Labor  Erzeugung exotischer Materie: Erhitzen oder Verdichten?  Diagnostische Sonden: Wie untersucht man einen Zustand, der nur s andauert?  Das Compressed Baryonic Matter (CBM) Experiment an FAIR

2 Facility for Antiproton and Ion Research (FAIR)
SIS 100 Tm SIS 300 Tm U: 35 AGeV p: 90 GeV Wichtig für CBM

3 Atom: m Nukleon: m Quark: <10-18 m Atomkern: m

4 Die Quarks Quarks sind punktförmig !
top bottom charm strange up down Quark up down strange charm bottom top Masse (MeV/c2) 5 10 150 1200 4200 170000 Ladung e 2/3 -1/3 Quarks sind punktförmig ! Größe der Kugel verdeutlicht Massen

5 Die Anti-Quarks anti-top anti-bottom anti- up anti- strange anti-charm
down Gleiche Masse wie Quarks, entgegengesetzte Ladung. Trifft ein Quark auf ein gleichartiges Antiquark, zerstrahlt das Paar in Energie.

6 Der Aufbau der Baryonen (3 Quarks)
Proton (p) 938 MeV/c2 Neutron (n) 939 MeV/c2 Delta ++ (Δ++) 1232 MeV/c2 u d u d u + ··· Lambda (Λ0) 1115 MeV/c2 Sigma+ (Σ+) 1189 MeV/c2 Sigma- (Σ-) 1197 MeV/c2 u d s u s d s + ···

7 Der Aufbau der Baryonen (3 Quarks)
Xi0 (Ξ0) 1315 MeV/c2 Xi- (Ξ-) 1321 MeV/c2 Omega- (Ω-) 1672 MeV/c2 d s s u s + ··· Lambdac (Λc) 2285 MeV/c2 c d u + ···

8 Anti-Baryonen (3 Anti-Quarks)
Antiproton 938 MeV/c2 Antineutron 939 MeV/c2 u d u d + ··· Es gibt keine Baryonen mit Quarks und Antiquarks aber es gibt Mesonen: Quark-Antiquark Paare

9 Leichte Mesonen (Quark-Antiquark Paare)
π- 140 MeV/c2 π+ 140 MeV/c2 π0 135 MeV/c2 Pionen: u d d u u Kaonen: K- 494 MeV/c2 K+ 494 MeV/c2 K0 498 MeV/c2 s d u s s u + ···

10 Schwere Mesonen (Quark-Antiquark Paare)
φ 1020 MeV/c2 J/ψ 3097 MeV/c2 s c + ··· D0 1864 MeV/c2 D+ 1869 MeV/c2 D- 1869 MeV/c2 c u c d c d + ···

11 p+ p0 L n p n p n K+ n K+ K- p p Die Erzeugung von Mesonen
Aus Energie entsteht Materie und Antimaterie ! u d n p s K+ K- u d s n p L K+

12 Was hält die Quarks in Hadronen (Baryonen und Mesonen) zusammen?
Gluonen: Vermittler der starken attraktiven Kraft zwischen Quarks/Antiquarks

13 Physik Nobelpreis 2004 für die Pioniere der Theorie der Starken Kraft: "Quanten-Chromo-Dynamik"
Gluonen wirken wie Gummibänder zwischen den Quarks, d.h : bei kleinen Abständen bewegen sich die Quarks frei, bei großen Abständen wird die attraktive Kraft unendlich groß. Quarks und Gluonen haben eine Eigenschaft genannt "Farbe", beobachtbar sind aber nur farblose Teilchen, die aus Quarks und Gluonen zusammengesetzt sind. David Gross, Frank Wilczek David Politzer

14 Die Kraft zwischen den Nukleonen ("Kernkraft")
Anziehung der Nukleonen wird vermittelt durch "Rand-Effekte" der Starken Kräfte im Nukleon

15 Rätsel der Starken Kraft: "Confinement (Einschluss)"
Die experimentelle Befreiung der Quarks: Erzeugung eines Plasmas aus Quarks und Gluonen

16 Rätsel der Starken Kraft: der Ursprung der Masse
99.9% der bekannten Masse des Universums besteht aus Baryonen Beiträge zur Masse eines Hadrons: 1. Gluonen 2. Bewegungsenergie der Quarks und Gluonen (E = mc2) 3. Wechselwirkung der Quarks mit dem Vakuum, das aus virtuellen Quark-Antiquark Paaren besteht Proton : u, u, d Quark u Quark Masse  5 MeV/c2 u Quark Masse 5 MeV/c2 d Quark Masse  10 MeV/c2 Summe (u+u+d)  20 MeV/c2 Protonenmasse = 938 MeV/c2

17 Idee: die Masse der Quarks verschwindet wieder, wenn man das Vakuum verdrängt, indem man die Quarks (bzw. die Hadronen) in dichte Kernmaterie einbringt. Experimente mit: Pionen, Kaonen, Rho-Mesonen, zukünftig: D-mesonen

18 Erzeugung exotischer Kernmaterie im Labor: Erhitzen oder Verdichten ?
Baryonen Hadronen Partonen Kompression Erhitzen = Quark-Gluon Plasma (Pionen-Erzeugung) Neutronensterne Frühes Universum

19 Erforschung der Eigenschaften heißer und dichter Kernmaterie
CERN-SPS, RHIC, LHC: hohe Temperatur, niedrige Baryonendichte FAIR SIS300: Moderate Temperatur, hohe Baryonendichte

20 Die Evolution des Universums
time temperature 15 billion years 1 billion years years 3 minutes 1 thousandth of a second 3 K 20 K 3.000 K 109 K 1012 K distance Wo sind die Antiteilchen geblieben? Die Ursuppe der ersten Millisekunde: Quarks, Antiquarks, Elektronen, Positronen Gluonen, Photonen

21 Geburt und Tod der Sterne
Zwiebelschalen- struktur vor der Explosion 8M M  15M Supernova II 1.4M Mcore 2M Neutronenstern M   8M Roter Riese Weißer Zwerg M 15M Supernova IIa M  2M Schwarzes Loch

22 Supernova 1987 in der Großen Magellanschen Wolke

23 … und sein pulsierendes Herz:
Im Jahre 1054 beobachteten chinesische Astronomen einen "Gaststern”: Hell wie der Vollmond (1 Monat) Der Krebsnebel ... … und sein pulsierendes Herz: 1968/69: Entdeckung einer pulsierenden Strahlungsquelle (Gammastrahlung - Radiowellen), Pulsfrequenz f= 30 Hz. glühender Rest einer Supernova: ca Lichtjahre von der Erde entfernt, Durchmesser ca. 10 Lichtjahre, expandiert mit ca Km/s.

24 Pulsare: Junge Neutronensterne
Rotierender Strahlungskegel (Leuchtturm-Prinzip) besteht aus Synchrotronstrahlung (Gammastrahlung – Radiowellen) Rotationsfrequenz f = Hz Radius des Sterns ca. 10 km Masse ca. 1.5 Sonnenmassen 3-10 fache Atomkern-Dichte Magnetfeld 5·1012 Gauss Anzahl: ca entdeckt, ca 100 Mio in unserer Galaxis vermutet

25 Modelle von Neutronensternen
Entstehen überwiegend seltsame Teilchen in hochdichter Kernmaterie ? Verändern sich die Eigenschaften von Hadronen in dichter Materie ? Wie inkompressibel ist Kernmaterie? Lösen sich bei hohen Dichten die Hadronen in Quarks und Gluonen auf ?

26 Die Dichte von Kernmaterie
Atomkern Radius R = A1/3 · 1.2·10-15 m. Für A = 200  R  6 fm Volumen V = 4/3 π R3 = 4/3 π 1.23 A fm3 Nukleonendichte 0 = A/V = 3/ (4 π 1.23) fm-3  0.14 Nukleonen/fm3 Masse des Nukleons m = 1.67  g Massendichte von Kernmaterie 0  m  270 Mio t/cm3 Neutronenstern Radius R  10 km, Volumen V  4200 km3 Masse M  1.4 Sonnenmassen = 1.4  2  1033 g Mittlere Dichte  = M/V  700 Mio t/cm3  2.6 fache Atomkerndichte Dichte im Zentrum 5 – 10 fache Atomkerndichte

27 Die Erzeugung hoher Baryonendichten im Labor:
hochenergetische Stöße zwischen Atomkernen SIS300

28

29 Erzeugung von Mesonen in Kollisionen zwischen Gold-Kernen
SIS18 SIS100/ 300

30 Diagnostische Sonden

31 Der Blick in den Feuerball mit durchdringenden Sonden
p n ++ K e+ e- r Untersuchung kurzlebiger Mesonen, die noch im Feuerball in ein Elektron-Positron Paar zerfallen. Aus den gemessenen Impulsen der Teilchen läßt sich die Masse des Mesons im Feuerball rekonstruieren.

32 Signaturen des Quark-Gluon Plasmas ?
Ideen: Erhöhte Ausbeute an seltsamen Teilchen (d.h. Teilchen, die ein strange Quark enthalten) Zerstörung von Charm-Anticharm Paaren (J/ψ Mesonen) Anzahl und Impuls der D-Mesonen (charm quark und u oder d)

33 Die Trennung von Charm-Anticharm Paaren (J/ψ Mesonen)
im Quark-Gluon Plasma

34 Die charmante Herausforderung: Messung von D-Mesonen und J/ψ Mesonen
Bisher wurden in Schwerionenstößen noch keine D-Mesonen nachgewiesen Messung: J/ψ  e+e- Ein J/ψ Meson in 1 Mio Stößen Experimentelle Probleme: Ein D-Meson in Au+Au Stößen Riesiger Untergrund Messung des Sekundärvertex mit einer Genauigkeit von  50μm

35 Experimentelle Herausforderungen
Im zentralen Stoß zweier Goldkerne bei einer Energie von 25 AGeV entstehen u.a. folgende Teilchen: 160 Protonen 236 Neutronen 300 negativ geladene Pionen 250 positiv geladene Pionen 300 neutrale Pionen 40 positiv geladene Kaonen 40 neutrale Kaonen 15 negativ geladene Kaonen Bis zu 10 Millionen solcher Stöße pro Sekunde Gleichzeitige Messung und Identifizierung von Hadronen und Elektronen Bestimmung der Spuren (vor allem der Vertex) aller Teilchen mit einer Genauigkeit von 50 Mikrometer

36 Einzigartige experimentelle Anforderungen an:
Zählratenfestigkeit der Detektoren (bis zu 100 kHz/cm2) Strahlungshärte der Detektoren und Elektronik (50 MRad) Vertexauflösung der Tracking Station (30 μm) Zeitauflösung der Stoppwand (80 ps über 140 m2) Rekonstruktion von 700 Trajektorien (Impulsauflösung < 1%) Qualität der Elektronen Identifizierung (Pionenanteil <1/10000) Geschwindigkeit der Datenaufnahme (1 Gbyte/s speichern)

37 Das CBM Experiment  Strahlungsharte Silizium Pixel/Streifen Detektoren im Magnetfeld  Elektronen-Detektoren: RICH1& TRD & ECAL: Pionen-Unterdrückung bis zu 105  Hadronen Identifizierung: RPC, RICH2  Messung von Photonen, neutralen Pionen, etc: elektromagn. Calorimeter (ECAL)  Hochgeschwindigkeits Datenaufnahme und Trigger System

38 Die Messung der Teilchenspuren im Magnetfeld mit Silizium Pixel und Streifen Detektoren
Silizium Tracking System (4 Mio Kanäle): 3 Ebenen Pixeldetektoren (Pixelgröße 40x40 μm2): im Abstand von 5, 10 und 20 cm hinter Target. Detektorgrößen 5x5 cm2, 10x10cm2, 20x20cm2. 4 Ebenen Streifendetektoren (Streifengröße 25 μm x 2-6 cm): Detektorgröße 40x40cm2, 60x60 cm2, 80x80 cm2, 100x100 cm2 Design Ziele: sehr dünne Detektoren d < 200 μm Ortsauflösung < 20 μm Hohe Strahlendosis: 1015 neq/cm2) schnelle Auslese

39 Messung der Teilchengeschwindigkeit über Cherenkov-Licht
Cherenkov-Effekt: Bewegt sich ein geladenes Teilchen durch ein Medium schneller als Licht, emittiert es Cherenkov-Strahlung: v > c/n (n ist Brechungsindex des Mediums) Emission einer kohärenten Wellenfront: cosθ = 1/(βn)

40 Ring abbildende Cherenkov-Detektoren (RICH)
Bestimmung der Teilchen- Geschwindigkeit durch Messung von θ (Ringradius des Lichtkegels) cosθ = 1/(βn)

41 Übergangsstrahlungsdetektoren Transition Radiation Detectors (TRD)
Prinzip: Elektronen erzeugen Übergangsstrahlung, Pionen nicht ALICE -TRD: 1000 Teilchen/(s cm2) CBM -TRD: bis zu Teilchen/(s cm2), Gesamtfläche der TRD-Kammern 500 m2 Kanäle

42 Das Compressed Baryonic Matter (CBM) Experiment

43 CBM Kollaboration : 39 Institute aus 14 Ländern
Croatia: RBI, Zagreb Cyprus: Nikosia Univ. Czech Republic: Czech Acad. Science, Rez Techn. Univ. Prague France: IReS Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Mannheim Univ. Marburg Univ. Münster FZ Rossendorf GSI Darmstadt Russia: CKBM, St. Petersburg IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov Inst., Moscow LHE, JINR Dubna LPP, JINR Dubna LIT, JINR Dubna Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Spain: Santiago de Compostela Univ. Ukraine: Shevshenko Univ. , Kiev Univ. of Kharkov Hungaria: KFKI Budapest Eötvös Univ. Budapest Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Portugal: LIP Coimbra Romania: NIPNE Bucharest

44 CBM F&E Arbeitsgruppen
Feasibility studies Simulations Design & construction of detectors FEE, Trigger, DAQ Framework GSI ,ω,  e+e- Univ. Krakow JINR-LHE Dubna Silicon Pixel IReS Strasbourg Frankfurt Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ. Münster NIPNE Bucharest KIP Univ. Heidelberg Univ. Mannheim GSI Darmstadt JINR-LIT, Dubna Univ. Bergen KFKI Budapest Silesia Univ. Katowice Univ. Warsaw Tracking KIP Univ. Heidelberg Univ. Mannheim JINR-LHE Dubna JINR-LIT Dubna J/ψ  e+e- INR Moscow GSI Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ Jülich Tech. Univ. Warsaw Silicon Strip Moscow State Univ CKBM St. Petersburg KRI St. Petersburg Univ. Obninsk J/ψ  μ+μ- PNPi St. Petersburg SPU St. Petersburg Ring finder JINR-LIT, Dubna ECAL ITEP Moscow GSI Darmstadt Univ. Krakow RPC-TOF LIP Coimbra, Univ. Santiago Univ. Heidelberg, GSI Darmstadt, Warsaw Univ. NIPNE Bucharest INR Moscow FZ Rossendorf IHEP Protvino ITEP Moscow RBI Zagreb Univ. Marburg π, K, p ID Heidelberg Univ, Warsaw Univ. Kiev Univ. NIPNE Bucharest INR Moscow D  Kπ(π) GSI Darmstadt, Czech Acad. Sci., Rez Techn. Univ. Prague RICH IHEP Protvino GSI Darmstadt Λ, Ξ,Ω PNPi St. Petersburg SPU St. Petersburg Magnet JINR-LHE, Dubna GSI Darmstadt

45

46 Leptonen (gibts auch als Antiteilchen)
Bestandteile der Materie Hadronen: Baryonen ( Leptonen (gibts auch als Antiteilchen) Teilchen e- - - e   Masse (MeV/c2) 0.5 105 1777  0 < 0.19 < 18.2 Ladung e 1 Wechselwirkungsteilchen: Photon (elektromagn. Kraft) W, Z (schwache Kraft) Gluon (starke Kraft) Graviton (?) (Gravitationskraft)

47 Identifizierung von Teilchen: Bestimmung der Masse
Flugzeitmethode Impuls = Masse · Geschwindigkeit: p = m · v  m = p / v 1. Impulsmessung im Magnetfeld B: p = e B r (r = Bahnradius) 2. Geschwindigkeit = Strecke / Zeit: v = s / t Problem: hochenergetische Teilchen, die fast Lichtgeschwindigkeit besitzen, können nicht über ihre Flugzeit getrennt werden

48 Die Kräfte der Natur galaxy 1021 m Gravitationskraft
General Relativity galaxy 1021 m matter 10-1 m Elektroschwache Kraft Electromagnetische Kraft QED Schwache Kraft Standard Model DNA 10-8 m crystal 10-9 m atom 10-10 m Starke Kraft QCD atomic nucleus 10-14 m nucleon 10-15 m electron <10-18 m quark


Herunterladen ppt "Urknall oder Neutronenstern ?"

Ähnliche Präsentationen


Google-Anzeigen