Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

2.3 2.3 Klimawandel durch Treibhauseffekt .31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO )

Ähnliche Präsentationen


Präsentation zum Thema: "2.3 2.3 Klimawandel durch Treibhauseffekt .31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO )"—  Präsentation transkript:

1 2.3 2.3 Klimawandel durch Treibhauseffekt Das Klima der Erde hat sich geändert Temperatur a KlimaIndizes (El Nino, NAO ) Niederschlag Sea level Gletscher Arktisches Eis Extreme Übersicht The Identification of human Influence on Climate Change Simulationen der globalen Temperatur lassen sich nicht alleine durch natürliche Strahlungsantriebe erklären Treibhausgase in der Atmosphäre Treibhausgase in der Atmosphäre seit der industriellen Revolution a Wo bleibt das in die Atmosphäre emittierte fossile CO2 ? Atmospheric CO2 on different time-scales Strahlungsantrieb und Global Warming Potential (GWP) Modelle EBM- Energiebilanz Modell Übersicht über kompliziertere Modelle Projektionen und Szenarien für das 21. Jahrhundert “ Historische Perspektive“ Emissionsszenarien und die Komplexität der weiteren Entwicklung Main Climate Changes Was tun? Erste Ansätze der Internationalen Gemeinschaft

2 „The Earth's climate system has changed,
2.31 Das Klima der Erde hat sich geändert Temperatur a KlimaIndizes (El Nino, NAO ) Niederschlag Sea level Gletscher Arktisches Eis Extreme Übersicht „The Earth's climate system has changed, globally and regionally , with some these changes being attributable to human activities.“ Quelle: IPCC-TAR (2001)

3 Direct Observations of Recent Climate Change
AR4 wird schon deutlicher: Direct Observations of Recent Climate Change Warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global mean sea level. unequivocal = eindeutig Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

4 2.310 Zusammenfassung der wichtigsten Erfahrungen (2001)
The Earth has warmed 0.6± 0.2 [K] since 1860 with the last two decades being the warmest of the last century; The increase in surface temperatures over the 20th Century for the Northern hemisphere is likely to be greater than that for any other century in the last 1000 years; Precipitation patterns have changed with an increase in heavy precipitation events in some regions; Sea level has risen cm since 1900; most non-polar glaciers are retreating; and the extent and thickness of Arctic sea ice is decreasing in summer; Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

5 Global average Air temperature
Zusammenfassung der wichtigsten Erfahrungen (2007) Global average Air temperature Updated 100-year linear trend of [0.56 to 0.92] oC for Larger than corresponding trend of [0.4 to 0.8] oC for ( TAR) Average Ocean temperature increased to depths of at least 3000 m – ocean has absorbed 80% of heat added > seawater expansion and SLR At continental, regional, and ocean basin scales, numerous long-term changes in climate have been observed: Changes in Arctic temperatures and ice, Widespread changes in precipitation amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy precipitation, heat waves and the intensity of tropical cyclones Quelle: IPCC- AR4-wg1, Vortrag Pachauri in Nairobi,

6 Global Mean Temperatures 1860-2001
Quelle: erhalten 2002_0128; wmo_climate2001_fig1....jpeg /

7 ‘98 ‘01 ,4 K ‘95 ‘90+1 ‘44 ‘83 -- 0 ‘50 ‘56 ‘76 ‘64 ‘29 ‘17

8 Aktueller Stand: Oberflächennahe Erdtemperatur
_____2005_1-11 Erhalten 2005_1221

9 Global mean temperatures are rising faster with time Warmest 12 years:
1998,2005,2003,2002,2004,2006, 2001,1997,1995,1999,1990,2000 0.026 0.018 Period Rate Years /decade Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

10 Arctic vs Global annual temperature anomalies (°C)
Warming in the Arctic is double that for the globe from 19th to 21st century and from late 1960s to present. Warmth 1925 to 1950 in Arctic was not as widespread as recent global warmth. Note different scales Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

11 Ein Blick in die Stratosphäre
Global gemittelte Temperatur der Stratosphäre ( km) Anomalien (relativ zu ) und einige explosive Vulkanausbrüche Trend: - 1,9 °C BQuelle: DPG2005_SyKE1.4Schoenwiese_CC-imIndustriezeitalter.ppt Datenquelle: Angell, 2004

12 Beobachtete Temperaturen innerhalb der Atmosphäre
Temperatures shown as monthly mean anomalies relative to the period 1979 to 1997 smoothed with a seven-month running mean filter. Dashed lines indicate the times of major volcanic eruptions. {Figure 3.17} BQuelle: IPCC_AR4wg1_TS: Fig TS.7, p.38

13 Millennial Northern Hemisphere (NH) Temperature from AD 1000-1999
Langzeitperspektive: Millennial Northern Hemisphere (NH) Temperature from AD Source: Mann et al The 1990s were warmer than at anytime during the last 1000 years Quelle: IPCC_2000_WatsonSpeech: Fig 1

14 Das war die berühmte „hockey stick“ Temperatukurve der Nordhalkugel
Über dies berühmte Kurve von Mann e.a. aus dem IPCC –Report 2001 haben sich viele Autoren mächtig aufgeregt. Wichtigster Streitpunkt: War es im Hochmittelalter nicht doch etwas wärmer? Man beachte aber die breiten Fehlerbalken. Man kann die Ausgleichskurve natürlich auch etwas anders zeichnen, am grundsätzli chen Ergebnis ändert sich aber wenig. Siehe Beispiel von Moberg e.a. (2005) der sogar eine Darstellung von 0 – 2000 AD veröffentlicht hat Das mittelalterliche Klimaoptimum liegt dort geringfügig höher als bei Mann e.a. und auf gleicher Höhe wie der als Referenz benutzte Mittelwert

15 Klimaänderungen: Langfristperspektive
(rel. zu ) Unsicherheit Jahr BQuelle: C.D.Schönwiese (2207):“Der neue wissenschaftliche Sachstandsbereicht des IPCC“; AKE2007F-Vortrag , Folie 15

16 Übersicht über diverse Publikationen:
NordHemisphäre Fazit: vielfältig, aber nicht grundlegend anders BQuelle:Schär.“Treibhausgase und Klimaänderung“, Vortrag Nuklearforum Schweiz,

17 Langzeitaspekt: Nordhemisphäre - Temperatur
Rekonstruktionen Modellsimulationen Modellsimulationen BQuelle:DPG2005_SyKE1.4Schoenwiese_ CC-imIndustriezeitalter.ppt Mann und Jones, 2003

18 A Paleoclimatic Perspective
Paleoclimate information supports the interpretation that the warmth of the last half century is unusual in at least the previous 1300 years The last time the polar regions were significantly warmer than present for an extended period (about 125,000 years ago, Eem), reductions in polar ice volume led to 4 to 6 metres of sea level rise. Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

19 The land and oceans have warmed
Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 2

20 Land surface temperatures are rising faster than SSTs
Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

21 Air temperatures preferred patterns
2.311a Klima Oszillationen, Indizes Air temperatures preferred patterns Many regional climate changes can be described in terms of preferred patterns of climate variability and therefore as changes in the occurrence of indices that characterise the strength and phase of these patterns.

22 Patterns (Modes) of Climate Variability
2.311a Klima Oszillationen, Indizes Patterns (Modes) of Climate Variability A significant component of atmospheric and climatic variability can be described in terms of fluctuations in the amplitude and sign of indices . The best known of these indices of preferred patterns of variability are:: El Niño-Southern Oscillation (ENSO), a coupled fluctuation in the atmosphere and the equatorial Pacific Ocean, with preferred time scales of 2 to about 7 years and global teleconnections. ENSO is often measured by the difference in surface pressure anomalies between Tahiti and Darwin and the SSTs in the central and eastern equatorial Pacific. für uns eher „exotisch: • Southern Annular Mode (SAM), the fluctuation of a pattern with low antarctic surface ressure and strong mid-latitude westerlies, analogous to the NAM, but present year round. • Pacific-North American (PNA) pattern, an atmospheric large-scale wave pattern featuring a sequence of tropospheric high and low-pressure anomalies stretching from the subtropical west Pacific to the east coast of North America. • Pacific Decadal Oscillation (PDO), a measure of the SSTs in the North Pacific that has a very strong correlation with the North Pacific Index (NPI) measure of the depth of the Aleutian Low. However, it has a signature throughout much of the Pacific. BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39

23 The frequency, persistence and magnitude of El-Nino events has increased
El Niño years La Niña years *As shown by changes in sea-surface temperature (relative to the average) for the eastern tropical Pacific off Peru Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 6

24 more El Niño events and changes in the evolution of ENSO,
ENSO: AR4 comments: The 1976–1977 climate shift, related to the phase change in the Pacific Decadal Oscillation (PDO) towards more El Niño events and changes in the evolution of ENSO, has affected many areas, including most tropical monsoons. There is substantial low-frequency atmospheric variability in the Pacific sector over the 20th century, with extended periods of weakened (1900–1924; 1947– 1976) circulation as well as periods of strengthened (1925–1946; 1977–2003) circulation. {3.2, 3.5, 3.6} BQuelle: IPCC_AR4wg1_TechnicalSummary:, p.38

25 Patterns (Modes) of Climate Variability
North Atlantic Oscillation (NAO), a measure of the strength of the Icelandic Low and the Azores High, and of the westerly winds between them, mainly in winter The NAO has associated fluctuations in the storm track, temperature and precipitation from the North Atlantic into Eurasia. Northern Annular Mode (NAM), a winter fluctuation in the amplitude of a pattern characterised by low surface pressure in the Arctic and strong mid-latitude westerlies. The NAM has links with the northern polar vortex and hence the stratosphere. BQuelle: IPCC_AR4wg1_TechnicalSummary: Box TS.2, p.39

26 Positive phase of NAM and NAO
Changes associated with the positive phase of the NAO and NAM : pressure winds precipitation changes. Warm coloured areas are warmer than normal Blue areas are cooler than normal. NAM NAO BQuelle: IPCC_AR4wg1_ TechnicalSummary: Box TS.2, Fig. 1; p.39

27 AR4 zum Nord-Atlantischen Wetter:
The characteristics of fluctuations in the zonally averaged westerlies in the Northern Hemisphere have more recently been described by their ‘annular mode’, the Northern Annular Mode (NAM). The observed changes can be expressed as a shift of the circulation towards the structure associated with one sign of the preferred pattern. Increased mid-latitude westerlies can be largely viewed as reflecting either NAO or NAM changes. Multi-decadal variability is also evident in the Atlantic, both in the atmosphere and the ocean. Quelle: IPCC_AR4wg1_TechnicalSummary:, p.38

28 Precipitation patterns have changed:
2.312 Niederschlag Precipitation patterns have changed: Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 3

29 Changes in Precipitation, Increased Drought
Significantly increased precipitation in eastern parts of North and South America, northern Europe and northern and central Asia. The frequency of heavy precipitation events has increased over most land areas - consistent with warming and increases of atmospheric water vapour Drying in the Sahel, the Mediterranean, southern Africa and parts of southern Asia. More intense and longer droughts observed since the 1970s, particularly in the tropics and subtropics.

30 Land precipitation is changing significantly over broad areas
Increases Decreases Smoothed annual anomalies for precipitation (%) over land from 1900 to 2005; other regions are dominated by variability.

31 Observed change in sea level
2.313 Observed change in sea level (UK) Stockholm Liverpool Time-series of relative sea level for the past 300 years from Northern Europe: The scale bar indicates ±100 mm. Stockholm, Sweden (detrended over the period 1774 to 1873 to remove to first order the contribution of post-glacial rebound); Liverpool - Data are of “Adjusted Mean High Water” rather than Mean Sea Level and include a nodal (18.6 year) term [Based on Figure 11.7 of TAR1] Quelle: IPCC_2001_TAR_TS: Fig 6

32 Anstieg der Meereshöhe seit dem letzten Glazial
Im 20. Jhd : + 1 bis 2 [mm/a] (aus Pegelmessungen) Seit dem letzten Glazial: vor 20 [ka], im Maximum des letzten Glazials : Meereshöhe lag 120 m tiefer (abseits von den Vereisungen) danach Anstieg vor [ka] war die Zeit des stärksten Anstieges: 10 [mm/a] die letzetn 6 [ka]: 0,5 [mm/a] die letzetn 3 [ka]: 0,3 - 0,5 [mm/a] The top figure shows the global surface temperature record of the last 140 years. It is quite clear that the Earth is warming and that the last two decades are the warmest two decades of the last 140 years. The bottom figure shows the temperature record in the northern hemisphere for the last 1000 years. It is quite clear that the temperature increase in the last 150 years is unparalleled in the last 1000 years, i.e., during the industrial era. Quelle: nach IPCC_2001_TAR_TS: p

33 Einfügen: Abb: Meeresanstieg in den letzten 100 ka

34 Annual averages of the global mean sea level since 1870
mm relative to the average for 1961 to 1990 Error bars are 90% confidence intervals. a reconstructed sea level fields since 1870 (red), tide gauge measurements since 1950 (blue) and satellite altimetry since 1992 (black). BQuelle: IPCC_AR4wg1_TechnicalSummary: Fig. TS.18, p.49, [Fig 5.13 ]

35 Contributions to sea level rise: Observed and Modelled
BQuelle: IPCC_AR4wg1_TechnicalSummary: Table TS3 p.50,

36 Gletscher A collection of 20 glacier length records from different parts of the world. Curves have been translated along the vertical axis to make them fit in one frame. Data are from the World Glacier Monitoring Service (http://www.geo.unizh.ch/wgms/) with some additions from various unpublished sources Length (unit: 1km ) a a The geographical distribution of the data (a single triangle may represent more than one glacier. Quelle: nach IPCC_2001_TAR1; fig 2.18, p.128

37 Gletscher-Schwund in den Alpen
Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, BQuelle:DLR_Schumann200_Klimawandel.ppt

38 Gletscher-Schwund in den Alpen
Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, BQuelle:DLR_Schumann200_Klimawandel.ppt

39 Gletscher-Schwund in den Alpen
Aufnahme der Pasterzenzunge mit Großglockner (3798 m) Gesellschaft für ökologische Forschung, Wolfgang Zängl, BQuelle:DLR_Schumann200_Klimawandel.ppt

40 Schmelzwasserspenden der Hochgebirge:
Verluste bis 2100 AD heute ___________ 2100 AD ©Pacific Northwest National Laboratory Beispiele: Alpenschnee: 61% bleiben übrig in 2100 AD Neuseeland Alpen: 16% ~ ~ Anden: 45% ~ ~ UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees

41 Schneedecken der Hochgebirge bis 2100 AD:
Die heutigen Abflussmengen (oben) sind den Prognosen für 2100 gegenüber gestellt. Die Schmelzwasserspenden in den Hochgebirge der Erde werden in den kommenden Jahren drastisch schrumpfen. Südamerika, Europa, der Westen der USA und Neuseeland sind am stärksten betroffen. UrQuelle:Ghan,SJ und Shippert,T.:“Physically Based Global Downscaling:CC Projections für a full Century, Jornal of Climate 19,No.9.pp BQuelle: SD842122_Bis-2100schmilzt-dieHäfte-desHochgebirge-Schnees

42 Arctic Sea Ice Melting since 1979
Arktisches Eis Arctic Sea Ice Melting since 1979 Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

43 Arctic Sea Ice in 2003 Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

44 when the ice extended over the Arctic Ocean from edge to edge.
1979: An image based on satellite data shows perennial ice cover in 1979, when the ice extended over the Arctic Ocean from edge to edge. Since then the area of coverage has decreased by 9% per decade 2003: A similiar image from 2003 shows dramatically reduced perennial ice cover. Large areas of open ocean have appeared near Russia, Alaska and Canada. Some climate models project, that the ice will be gone in summer by the end of the century. Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

45 Quelle: The Big Thaw“, National Geographic (2004), Heft 9, p.21;

46 Abschmelzen des arktischen Meereises zwischen 1979 und 2005
©National Snow and Ice Data Center Eindeutiger Trend: Seit Beginn der Satellitenbeobachtung hat die Ausdehnung des Meereises drastisch abgenommen. BQuelle: SpectrumDirekt SD vom , Bild 2 ; UrQuelle: National Snow and Ice Data Center

47 und in 2100 AD Eisbedeckung der Arktis Heute Meereis und LandSchnee
Simulation: Eisbedeckung der Arktis Meereis und LandSchnee im Frühjahr und im Herbst: Heute und in 2100 AD Arktis im September eisfrei Schnee und Eis nur noch im Winter UrQuelle: MPI-Meteorologie Hamburg 2005, M.Böttinger, Presseerklärung DKRZ (Deutsches Klimarechenzentrum), Hamburg;erscheint im IPCC-Bericht AR4; BQuelle:

48 Extreme Klimaereignisse werden immer ausgeprägter
Exzerpt aus Vorträgen von Prof. Schönwiese, Uni Frankfurt Goto Exkurs: V2.316_KlimaExtreme_Exzerpt-Schoenwiese.ppt

49 Bemerkung zur Angabe von Todesopfer:
(1) Evidente Todesopfer : Individuum bekannt, Todes-ursache und Kausalität gesichert. (z.B.: Tote durch Ertrinken bei Hochwasser) (2) Statistische Todesopfer: Klare statistische Korrelation zwischen Anzahl der Todesfälle und äußerem Ereignis. (z.B. erhöhte Sterblichkeit bei Hitzewelle ) (3) Hochgerechnete Todesopfer: Extrapolierte Todeszahlen aufgrund von Dosis-Wirkungsbeziehung aus einem anderen Dosis-Bereich. Kein statistischer Nachweis mehr möglich. (z.B.: Tote in der AllgemeinBevölkerung durch kleine Strahlendosen)

50 North Atlantic hurricanes have increased with SSTs
Marked increase after 1994 N. Atlantic hurricane record best after 1944 with aircraft surveillance. Global number and percentage of intense hurricanes is increasing ( ) SST Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

51 auch die eher alltäglichen Extremwerte haben sich geändert:

52 Warm nights are increasing; cold nights decreasing
fewer more fewer more Frequency of occurrence of cold or warm temperatures for 202 global stations for 3 time periods: 1901 to 1950 (black), 1951 to 1978 (blue) and 1979 to 2003 (red). Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

53 Direct Observations of Recent Climate Change
Some aspects of climate have not been observed to change: Tornadoes Dust-storms Hail Lightning Antarctic sea ice Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

54 Hydrological and Storm-Related Indicators
2.317 Übersicht Hydrological and Storm-Related Indicators Probability : *** > 99% ; ** = in [90%, 99%] ; * = in [66%, 90%]; ? in [33%,66%] IPCC2001_TAR1_Fig2.39b

55 IPCC2001_TAR1_Fig2.39a

56 Also das Wichtigste: The Earth has warmed 0.6± 0.2 [K] since 1860 with the last two decades being the warmest of the last century; The increase in surface temperatures over the 20th Century for the Northern hemisphere is likely to be greater than that for any other century in the last 1000 years; Precipitation patterns have changed with an increase in heavy precipitation events in some regions; Sea level has risen cm since 1900; most non-polar glaciers are retreating; and the extent and thickness of Arctic sea ice is decreasing in summer; Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: p 1-Summary

57 The Identification of a human Influence
2.32 The Identification of a human Influence on Climate Change

58 IPCC 2001: TAR_wg1: E. The Identification of a human Influence on CC
Feststellung des IPCC: IPCC 2001: TAR_wg1: E. The Identification of a human Influence on CC E.8 Synopsis „ In the light of new evidence and taking into account the remaining uncertainties, most of the observed warming over the last 50 years is likely to have been due to the increase greenhouse gas concentrations. Quelle: IPCC_2001_TAR_TS: p. 61

59 from the instrumental record compared with ensembles of 4 simulations
Bestätigung durch Modellrechnung: We look at Global mean surface temperature anomalies relative to the 1880 to 1920 mean from the instrumental record compared with ensembles of 4 simulations with a coupled ocean-atmosphere climate model. The thick line shows the instrumental data while the thin lines show the individual model simulations in the ensemble of four members. Note that the data are annual mean values. The model data are only sampled at the locations where there are observations

60 1. Can natural factors alone explain the recent temperature record?
(a) model forced with solar and volcanic forcing only 1. Can natural factors alone explain the recent temperature record? Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58;

61 “Simulations of the response to natural forcings alone … do not explain the warming in the second half of the century” SPM {solar and volcanic forcing only} Stott et al, Science 2000 Quelle: IPCC_2001_TAR_TS:fig 15a, p.58; wg1_2_Mitchell - Vortrag bei COP6 Bonn 2001, Folie 12

62 b) model forced with anthropogenic forcing
including: well mixed greenhouse gases, changes in stratospheric and tropospheric ozone and the direct and indirect effects of sulphate aerosols, 2. Can anthropogenic factors alone explain the temperature recent record?

63 {well mixed GHG + O3 + aerosols}
Quelle: IPCC_2001_TAR_TS:fig 15b, p.58

64 c) model forced with all forcings,
both natural and anthropogenic.

65 {solar and volcanic} and {well mixed GHG + O3 + aerosols}
Both natural and anthropogenic forcings {solar and volcanic} and {well mixed GHG + O3 + aerosols} Quelle: IPCC_2001_TAR_TS:fig 15c, p.58

66 Remarks and details to Figure 15:
The changes in sulphate aerosol are calculated interactively, and changes in tropospheric ozone were calculated offline using a chemical transport model. Changes in cloud brightness (the first indirect effect of sulphate aerosols) were calculated by an off line simulation and included in the model. The changes in stratospheric ozone were based on observations. The volcanic and solar forcing were based on published combinations of measured and proxy data. The net anthropogenic forcing at 1990 was 1.0 Wm including a net cooling of 1.0 W/m2 due to sulphate aerosols. The net natural forcing for 1990 relative to 1860 was 0.5 Wm-2, and for 1992 was a net cooling of 2.0 Wm-2 due to Mount Pinatubo. Other models forced with anthropogenic forcing give similar results to those shown in (b). Quelle: IPCC_2001_TAR_TS:fig 15a-c, p.58

67 Most of the observed warming of the last 50 years is attributable to human activities
also: Quelle: IPCC-COP6a_Bonn2001_WatsonSpeech: Fig 8

68 Attribution are observed changes consistent with
Observations are observed changes consistent with expected responses to forcings inconsistent with alternative explanations All forcing Solar+volcanic Attribution of climate change to causes involves READ Climate models are important tools for attributing and understanding climate change. Understanding observed changes is based on our best understanding of climate physics, as contained in simple to complex climate models. For the 4rth assessment report, we had a new and very comprehensive archive of 20th century simulations available. This has greatly helped. This figure gives an example. You see observed global and annual mean temperature in black over the 20th century compared to that simulated by a wide range of these models. On the top, in red, are individual model simulations and their overall mean shown fat, that are driven by external influences including increases in greenhouse gases, in aerosols, in changes in solar radiation and by volcanic eruptions. The observations rarely leave the range of model simulations. The trends and individual events like cooling in response to volcanic eruptions (POINT) are well reproduced. The fuzzy range gives an idea of uncertainty with variability in the climate system. Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

69 Understanding and Attributing Climate Change
Continental warming likely shows a significant anthropogenic contribution over the past 50 years Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

70 Fazit: 1. Der Temperaturanstieg der letzten 50 Jahre kann global und regional auf den anthropogenen Einfluss zurückgeführt werden. (heute viel deutlicher als noch beim TAR (2001)) 2. Menschlicher Einfluss wird heute (AR4) auch erkennbar in anderen Klimabereichen, u.a.: Erwärmung des Ozans Temperatur - Extrema Windsystemen Quelle: IPCC-AR4-wg1 , Vortrag Pachauri in Nairobi,

71 2.33 Treibhausgase in der Atmosphäre
.331 CO2 und andere GHG seit der industriellen Revolution .332 Atmospheric CO2 on different time-scales .333 Strahlungsantrieb und Global Warming Potential (GWP) GHG= Grennhouse Gas

72 CO2 in der Atmosphäre seit der industriellen Revolution
2.331 CO2 in der Atmosphäre seit der industriellen Revolution

73 Human activities are increasing
the atmospheric concentrations of: greenhouse gases that warm the atmosphere and, in some regions, of sulfate aerosols that cool the atmosphere; Most of the observed warming of the last 50 years is attributable to human activities

74 Berichtsstand:Ende 2000 update vom 2001_0813
aktuelle Adresse: next side

75 Berichtsstand:Mitte 2005 update vom 2006_0130
Berichtsstand:Mitte 2005 update vom 2006_0130

76 Originaldaten aus Mauna Loa – jedermann kann mit ihnen rechnen
******************************************************************* *** Atmospheric CO2 concentrations (ppmv) derived from in situ *** *** air samples collected at Mauna Loa Observatory, Hawaii *** *** *** *** Source: C.D. Keeling *** *** T.P. Whorf, and the Carbon Dioxide Research Group *** *** Scripps Institution of Oceanography (SIO) *** *** University of California *** *** La Jolla, California USA *** *** *** *** May *** Monthly values are expressed in parts per million (ppm) and reported in the 2003A SIO manometric mole fraction scale. The monthly values have been adjusted to the 15th of each month. Missing values are denoted by The "annual" average is the arithmetic mean of the twelve monthly values. In years with one or two missing monthly values, annual values were calculated by substituting a fit value (4-harmonics with gain factor and spline) for that month and then averaging the twelve monthly values. Quelle:

77 Originaldaten aus Mauna Loa
Quelle: Year Jan. Feb. March April May June July Aug. Sept. Oct Nov. Dec. Annual Annual-Fit

78 Siehe nächste Seite! Danke Herr Becker.
: aktualisierte Quelle: aber leider immer noch die alten Daten. Wer findet aktuellere Daten? Siehe nächste Seite! Danke Herr Becker.

79 Aktualisierte (2007-06) Links: http://www.mlo.noaa.gov/home.html
hp of Mauna loa Observatory: Aktuelle CO2 Daten:

80 These observations have been taken since the International Geophysical Year in It can be seen that the upward trend is not steady., Fig. from (postscript version: ftp://ftp.cmdl.noaa.gov/ccg/figures/co2mm_mlo.ps) BQuelle: A.Robock:Lecture: „Volcanic Eruptions and Climate“, 2005, Folio95

81 If you plot the CO2 distribution as a function of latitude and time, you get the CO2 “rug.” The upward trend and out of phase relationship between the hemispheres is obvious. Fig. from (postscript version: ftp://ftp.cmdl.noaa.gov/ccg/figures/co2rug_multicolor.ps) BQuelle: A.Robock: Vorlesung:“ Volcanic Eruptions and Climate“, 2005, Folie96

82 Principal investigator: Thomas Conway, NOAA CMDL
The year-to-year changes in CO2 concentrations are certainly not uniform. Fig. from (actually postscript image from ftp://ftp.cmdl.noaa.gov/ccg/figures/co2gr.ps) BQuelle: A.Robock: ,Lecture: „Volcanic Eruptions and Climate“, 2005, Folio97 Principal investigator: Thomas Conway, NOAA CMDL

83 Possible causes of interannual CO2 variations
- Changes in emissions - Land use changes - Unusual atmospheric temperatures or precipitation (e.g., drought) - El Niño and La Niña episodes - Volcanic eruptions through effects on diffuse radiation These ideas from Hoffman (2004), and discussed in detail by Robock (2005). Hofmann, D. J. (2004), Volcanic eruption influences on the rate of increase in major atmospheric greenhouse gases over the past 25 years, presentation at the IAVCEI General Assembly, Pucón, Chile, November 18, 2004. Robock, Alan, 2005: Cooling following large volcanic eruptions corrected for the effect of diffuse radiation on tree rings. Geophys. Res. Lett., 32, L06702, doi: /2004GL Quelle: A.Robock:“ Volcanic Eruptions and Climate“, 2005, Folio98

84 Atmosphäre emittierte fossile CO2 ?
Wo bleibt das in die Atmosphäre emittierte fossile CO2 ? Es gibt: große C-Speicher und große natürliche jährliche Flüsse (150 Gt /a C) Die zusätzliche Emission des fossilen CO2 (ca. 7 Gt C/a ) ist nur ein kleiner Teil des gesamten KohlenstoffKreislaufes.

85 Globaler Kohlenstoffkreislauf in Gt C bzw. Gt C/Jahr
Atmosphäre Stratosphäre J Troposphäre J Vulkanismus fossile Brennstoffe < 0,05 6 * 2?? Waldrodung 1,5? 60 <1? 90 0,5? 2-3 600 Landvegetation ,5-50 J 1600 tote Biomasse J Mischungsschicht J „tiefer“ Ozean > 1000 J Biosphäre Ozean Bodenemission Sedimente J davon: 3500 Kohle 300 Erdöl 200 Erdgas Verwitterung 0,4 Pedosphäre/ Lithosphäre IPCC 2001 u.v.a., hier nach Schönwiese, 2003; * 2004: 7,5 Gt C entspr. 27,5 Gt CO2 BQuelle: C.D.Schönwiese: , Frankfurt/M; Folie 28

86 Bilanz nach 200 Jahren CO2 Emission durch den Menschen :

87 Carbon emissions and uptakes since 1800 (Gt C)
Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson 6

88 Wo bleibt das CO2 letzendlich : Atmosphäre Ozean

89 Atmosphärisches CO2 nach verschiedenen Emissionswegen
GesamtEmission: 18 Tt CO2 !! 2050_ Quelle: IPCC 2005: SRCCS: Fig.6.2, p (SRCSS= SpecialReport on CO2 Capture and Storage)

90 Figure 6.2. Simulated atmospheric CO2 resulting from CO release to the atmosphere or injection into the ocean at 3,000 m depth (Kheshgi and Archer, 2004). Emissions follow a logistic trajectory with cumulative emissions of 18,000 GtCO2. (sehr viel !!) Illustrative cases include % of emissions released to the atmosphere leading to a peak in concentration, % of emissions injected into the ocean, and 0% no emissions (i.e., other mitigation approaches are used). Additional cases include atmospheric emission to year 2050, followed by either (after 2050) 50% to atmosphere and 50% to ocean after 2050, or , % to atmosphere and 50% by other mitigation approaches after Fazit: Ocean injection results in lower peak concentrations than atmospheric release but higher than if other mitigation approaches are used (e.g., renewables or permanent storage). Quelle: IPCC 2005: SRCCS: Fig.6.2, p (Bildunterschrift)

91 Atmospheric CO2 on different time-scales
2.332 Atmospheric CO2 on different time-scales (a) Direct measurements of atmospheric CO2. (b) CO2 concentration in Antarctic ice cores for the past millenium. Recent atmospheric masurements (Mauna Loa) are shown forcomparison.. ..Variations in atmospheric CO2 concentration on different time-scales.. (e) Geochemically inferred CO2 concentrations. (d) CO2 concentration in the Vostok Antarctic ice core. (c) CO2 concentration in the Taylor Dome Antarctic ice core. Different colours represent results from different studies. Quelle: IPCC_2001_TAR_TSFig.10a-d, p.40

92 The last 0.5 [Ga] : Geochemically inferred atmospheric CO2
(Coloured bars represent different published studies) Quelle: IPCC_2001_TAR_TSFig.10 f, p.40

93 GHG, Radiative Forcing and GWP
2.343 GHG, Radiative Forcing and GWP Treibhausgase (GHG) als Indikatoren von menschliche Aktivitäten Beschreibung ihrer direkten Wirkung : Strahlungsantrieb (Radiative Forcing) „Normierung“ ihrer Wirkung über die Zeit durch Vergleich mit CO Global Warmimg Potential (GWP)

94 Concentration of Carbon Dioxide and Methane Have Risen Greatly Since Pre-Industrial Times
Carbon dioxide: 33% rise Methane: 100% rise ppb BW 5 The MetOffice. Hadley Center for Climate Prediction and Research. flask = Flasche Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

95 Indicators of the Human Influence on the Atmosphere during the Industrial Era
These figures show that the atmospheric concentrations of the key anthropogenic greenhouse gases, carbon dioxide, methane and nitrous oxide were constant over hundreds of years until the industrial era. The observed increases in the atmospheric concentrations carbon dioxide, methane and nitrous oxide of 33%, more than a factor of two, and about 15% are attributable to human activities. Similarly, the atmospheric concentration of sulfate aerosols started to increase in the late 1800s due to the combustion of coal. Quelle: IPCC-COP6a_Bonn2001_wg1_3_Watson

96 Der Strahlungsantrieb : „radiative forcing“
A process that alters the energy balance of the Earth - atmosphere system is known as a radiative forcing mechanism (1. IPCC-Report (1990), p ). Radiative forcing [ W/m2 ] is the change in the balance between radiation coming into the atmosphere and radiation going out. A positive radiative forcing tends on average to warm the surface of the Earth, and negative forcing tends on average to cool the surface.

97 Radiative forcing : Radiative forcing is the change in the net , downward minus upward, irradiance (in W m–2) at the tropopause , due to a change in an external driver of climate change, such as, for example, a change in the concentration of CO2 or the output of the Sun. Radiative forcing is computed with all tropospheric properties held fixed at their unperturbed values, and after allowing for stratospheric temperatures, if perturbed, to readjust to radiative-dynamical equilibrium. Radiative forcing is called instantaneous if no change in stratospheric temperature is accounted for. For the purposes of this report, radiative forcing is further defined as the change relative to the year and, unless otherwise noted, refers to a global and annual average value. Radiative forcing is not to be confused with cloud radiative forcing, a similar terminology for describing an unrelated measure of the impact of clouds on the irradiance at the top of the atmosphere. Quelle: AR4-wg1, Final Report- Glossary, p.951

98 if it is negative, cooling occurs.
Energy balance The difference between the total incoming and total outgoing energy If this balance is positive, warming occurs; if it is negative, cooling occurs. Averaged over the globe and over long time periods, this balance must be zero. Because the climate system derives virtually all its energy from the Sun, zero balance implies that, globally, the amount of incoming solar radiation on average must be equal to the sum of the outgoing reflected solar radiation and the outgoing thermal infrared radiation emitted by the climate system. A perturbation of this global radiation balance, be it anthropogenic or natural, is called radiative forcing. External forcing External forcing refers to a forcing agent outside the climate system causing a change in the climate system. External forcings are: Volcanic eruptions, solar variations and anthropogenic changes in the composition of the atmosphere and land use change Quelle: AR4-wg1, Final Report- Glossary,

99 out: 107 in: 342 out: 235 Balance: radiation coming in : solar input = [W/m^2 radiation going out. : 107 (reflected solar) + 235(i.r.) = 342 [W/m^2] IPCC2001_TAR1_Fig1.2

100 Stand TAR, (2001): SPM 3 Quelle: IPCC-COP6a_Bonn2001_wg1_1_Houghton

101 Aktueller Stand AR4, (2007):

102 Zeitliche Entwicklung 1880-2000
der GHG‘s und sonstiger Strahlungsantriebe Wer ist schuld am Treibhauseffekt ?

103 Die Klimaantriebe in ihrer zeitlichen Entwicklung
all GHG__ __solar _Aerosol Aerosol in Stratosphere)__ BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb A

104 (B) mit dem GISS Modell simulierte und beobachtete Temperaturänderung
Modellrechnungen mit Klimaantrieben (forcings) und resultierenden Temperaturänderung für den Zeitraum Modellrechnungen des Goddard-Instituts für den Zeitraum (Hansen 2005a) mit den (A) in den Klimasimulationen verwendeten Klimaantrieben (forcings) und die (B) mit dem GISS Modell simulierte und beobachtete Temperaturänderung BQuelle: VGB-Beising (2006): Klimawandel und Energiewirtschaft-Literaturrecherche, p.115, Abb. 8.15

105 Global Warming Potential (GWP)
The GWP is typically used to contrast different greenhouse gases relative to CO2. The GWP provides a simple measure of the relative radi- iative effects of the emissions of various greenhouse gases. GWP is calculated using the formula: where: ai = the instantaneous radiative forcing due to a unit increase in the concentration of trace gas i. ci = concentration of the trace gas i, remaining at time t after after its release. n = the number of years over which the calculation is performed. ai * ci(t) dt aCO2 * cCO2(t) dt Quelle:ORNL_OakRidge2002_Current_GHG..htm

106 Current GHG Concentrations
Quelle: OakRidge NatLab ornl.gov/pns/ current_ghg.html mit Links zu Datenmaterial Quelle:ORNL_OakRidge2002_Current_GHG..htm

107 2.34 Modelle 2.341 Ein einfaches Energiebilanz Modell (EBM)
Komplexere Modele Fortsetzung in Datei V2.34_Klimawandel2 GHG= Greenhouse Gas

108 Weitere Quellen und hervorragende Darstellungen

109 Globaler und regionaler Klimawandel
Christian-D. Schönwiese Universität Frankfurt/Main Institut für Atmosphäre und Umwelt © ESA/EUMETSAT: METEOSAT 8 SG – multi channel artificial composite colour image, , 12:15 UTC Schönwiese_CC_Vortrag_FH-frankfurt-2006.ppt

110 Volcanic Eruptions and Climate
Alan Robock Department of Environmental Sciences Rutgers University, New Brunswick, New Jersey USA This presentation discusses atmospheric emissions from volcanic eruptions and their effects on weather and climate. version 1.3 Quelle: A.Robock:Lecture: Volcanic Eruptions and Climate, 2005, Folie1


Herunterladen ppt "2.3 2.3 Klimawandel durch Treibhauseffekt .31 Das Klima der Erde hat sich geändert .311 Temperatur .311a KlimaIndizes (El Nino, NAO )"

Ähnliche Präsentationen


Google-Anzeigen