Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

The German Wind Resource and Norwegian Hydro – Interesting Possibilities Lars Audun Fodstad, SVP, Statkraft Energy AS, BMU 5th July 2010, Berlin.

Ähnliche Präsentationen


Präsentation zum Thema: "The German Wind Resource and Norwegian Hydro – Interesting Possibilities Lars Audun Fodstad, SVP, Statkraft Energy AS, BMU 5th July 2010, Berlin."—  Präsentation transkript:

1 The German Wind Resource and Norwegian Hydro – Interesting Possibilities Lars Audun Fodstad, SVP, Statkraft Energy AS, BMU 5th July 2010, Berlin

2 3200 EMPLOYEES.. 90% 264 POWER AND DISTRICT HEATING PLANTS 35% OF NORWAYS POWER GENERATION RENEWABLE ENERGY...IN MORE THAN 20 COUNTRIES WITHIN RENEWABLES IN EUROPE No. 1

3 FROM STATKRAFTS KEY AREAS side 3 European Flexible Generation and Market Operations Develop and optimize hydro portfolio in Norway and Sweden, including small hydro in Norway Evaluate European growth opportunities for flexible hydropower, including France Build and upgrade gasfired power plants in core markets (Continent/UK)

4 THE NORTH SEA AREA WIND POWER DEVELOPMENT – 2020 SCENARIO Offshore: MW Total onshore/offshore: MW Creating a Wind Belt onshore/offshore from UK via France, Belgium, The Netherlands, Germany, Denmark and Southern Sweden side 4

5 GRID AND GRID INTEGRATION - MAIN CHALLENGES Infrastructure Development Connecting VarRES to Load centres Flexibility options Storage facilities Enabling market development See entsoes TYNDP Handling the wind productions variability Wind power developing from a minor to a main part of the production portfolio with dispatch priority Creates new need for flexibility in the other parts of the electricity system side 5

6 TRANSMISSION CHALLENGES Bringing MW onshore HVAC can and will be used for relatively small capacities over shorter distances HVDC has to be used for larger capacities and longer distances – the new VSC technology is able to operate without a grid backup Bringing MW to the load centres Upgrading AC overhead lines HVDC cable connections? Difficult, but it has to be done side 6 Source: entsoe TYNDP

7 THE WIND PRODUCTIONS VARIABILITY Page 7

8 FLEXIBILITY CHALLENGES Ref. TradeWind 2020 Variations in wind power production Europe looked upon as one bus bar Max. 54 % of installed capacity Min. 9 % of Installed capacity Difference45 % of installed capacity or 95 GW Less than four days between top and bottom Regional example: The Netherlands as one bus bar Max.93 % of installed capacity Min. 0 % of installed capacity Rises from 7 to 90 % of installed capacity (6 GW in 2030) in six hours (time resolution for wind data) side 8

9 FLEXIBILITY OPTIONS Production Nuclear Fossil fired, gas and coal Reservoir based hydro Storage Pumped Storage CAES Batteries/EV DSM/Smart Grids Connecting and further develop the Norwegian hydro resource to deliver a significant part of the needed flexibility? side 9

10 Page 10 EUROPEAN HYDRO FLEXIBILITY – SLIDE I Reservoir based hydro power in the production mix In general used for storage and peak power production In Norway developed for storage and base load Key factors for hydro as storage and peak power Annual Energy Production, inflow TWh Reservoir Capacity TWh Installed Capacity MW Hydro Energy Production, Storage Capacity and Rated Power (1998) UCTE 86 TWh 57 TWh 49 GW Norway 112,6 TWh 84,1 TWh 27,3 GW NORDEL, ex.NO 76,2 TWh 38,6 TWh 19,1 GW

11 Page 11 EUROPEAN HYDRO FLEXIBILITY – SLIDE II Ratio between Annual Production/Installed Capacity, i.e. the number of hours necessary to deliver Annual Production UCTE1755 h Norway4125 h NORDEL, ex.NO3980 h Ratio between Reservoir Capacity/Installed Capacity, i.e. the number of hours necessary to empty the reservoirs without any inflow UCTE1160 h Norway3080 h NORDEL, ex.NO2020 h

12 NORWEGIAN HYDRO FLEXIBILITY OPTIONS – SLIDE I Hydro Installed capacity 28 GW Can contribute a lot to balancing, regulation, peak and back-up production except for some hours at winter peak load Example: The existing 1 GW connection to Denmark Expansion possibilities in Southern Norway GW Converting from base load to peak load production by installing additional generators in the existing power stations Pumped storage Installed capacity 1 GW Mainly built for seasonal pumping Expansion possibilities in Southern Norway GW Storage capacity for continuous pumping 120 hours Using only existing reservoirs both upstream and downstream side 12

13 NORWEGIAN HYDRO FLEXIBILITY OPTIONS – SLIDE II Norway has alone close to 50 % of the hydro reservoir capacity in Europe To take advantage of this huge flexibility resource it is necessary to connect it to nodes in the wind belt side 13

14 POWER FLOW From the wind belt to Norway High wind generation Insufficient transmission capacity to the load centres Low demand Low, zero or negative prices From Norway via the wind belt to the load centres on the continent and UK Low wind generation The transmission capacity to the load centres are idle High demand High prices side 14

15 ADDITIONAL INFRASTRUCTURE - BENEFIT The only additional infrastructure needed is the connection between the wind belt and the Norwegian hydro resources Benefit from interaction between wind and hydro resources Taking care of excess wind power production otherwise lost Delivering balancing, reserve, peak and back-up power Reducing the need for fossil fired reserves both running and ready to start Reducing emissions side 15

16 16

17 EXCHANGE WITH NORWAY – EXAMPLE I Page 17 Import of excess wind power MW in 1500 hours = 15 TWh Storage in Norwegian reservoirs 5000 MW reduced ordinary hydro production = 7,5 TWh 5000 MW pumping, total efficiency factor 0,7 = 5,25 TWh Export of Peak Power MW in 1275 hours = 12,75 TWh Alternative fossil fired Peak Power Result: 12,75 TWh saved RES and reduced emissions

18 EXCHANGE WITH NORWAY – EXAMPLE II Page 18 Import of excess wind power MW in 1000 hours = 10 TWh Storage in Norwegian reservoirs 5000 MW reduced ordinary hydro production = 5,0 TWh 5000 MW pumping, total efficiency factor 0,7 = 3,5 TWh Export of Peak Power MW in 850 hours = 8,5 TWh Alternative fossil fired Peak Power Result: 8,5 TWh saved RES and reduced emissions

19 Page 19 EXISTING NORWEGIAN PUMPED STORAGE Hydro Developments with Pumped Storage Sira-Kvina, Duge power station, seasonal storage: 2x100 MW reversible units Head 215 m Reservoir capacity Million m3 Tunnel length approx. 13 km Inaugurated 1978 Ulla-Førre, Saurdal power station, seasonal storage, see also following slides: 4x160 MW, two of them reversible units Head 450 m Reservoir capacity Million m3 Inaugurated

20 Page 20 SOME POSSIBLE PROJECTS Expansion Project Tonstad power station Further Expansion Possibilities in Sira-Kvina and several other Norwegian Hydro Power Systems located in South Norway

21 7 power stations - 16 units Total capacity 1760 MW Annual production ~ 6 TWh Reservoir capacity 5,6 TWh SIRA-KVINA MAIN DATA

22 Page 22 RESERVOIRS – POWER STATIONS All Connections Reservoirs - Power Plants are Tunnels All Power Plants are in Caverns All outlets into reservoir or sea Total Head Developed 930/900 m to the sea Sira-Kvinas anlegg

23 WATERWAY

24 Page 24 EXPANSION PROJECT TONSTAD - SLIDE I Head 430 m Tunnel length 11 km Existing installation 4x160 MW 1x320 MW Expansion 2x480 MW reversible units

25 EXPANSION PROJECT TONSTAD - SLIDE II

26 Page 26 SIRA-KVINA FURTHER EXPANSION Tonstad power station Additional capacity 960 MW reversible Total capacity then 2880 MW (1920 MW reversible) Solhom power station Existing capacity 200 MW Additional capacity 1000 MW reversible

27 EXCHANGE WITH NORWAY - GERMAN REPORT Page % erneuerbare Stromversorgung bis 2050: klimaverträglich, sicher, bezahlbar Vorläufige Fassung vom 5. Mai 2010

28 Page 28 Zusammenfassung und Empfehlungen I Die Ergebnisse der Szenarien für 2050 im Überblick – Das Potenzial an regenerativen Energiequellen reicht aus, um den Strombedarf in Deutschland und Europa vollständig zu decken. – Dabei kann Versorgungssicherheit gewährleistet werden: Zu jeder Stunde des Jahres wird die Nachfrage gedeckt. Voraussetzung ist der Aufbau der entsprechenden Erzeugungskapazitäten und die Schaffung von Möglichkeiten für den Ausgleich zeitlich schwankender Einspeisung von Strom durch entsprechende Speicherkapazitäten.

29 Page 29 Zusammenfassung und Empfehlungen II Die Ergebnisse der Szenarien für 2050 im Überblick – Eine vollständig nationale Selbstversorgung ist zwar darstellbar, aber keineswegs empfehlenswert. – Die Kosten der Stromversorgung können durch einen regionalen Verbund mit Dänemark und Norwegen oder einen größeren europäisch-nordafrikanischen Verbund im Vergleich zur nationalen Selbstversorgung erheblich gesenkt werden.

30 Page 30 Zusammenfassung und Empfehlungen III Die Ergebnisse der Szenarien für 2050 im Überblick – Eine anspruchsvolle Energiespar- und Effizienzpolitik senkt die ökonomischen und ökologischen Kosten der Versorgung mit erneuerbaren Energien.

31 Page 31 Zusammenfassung und Empfehlungen IV Die Ergebnisse der Szenarien für 2050 im Überblick – Der derzeitige Bestand an konventionellen Kraftwerken ist als Brücke hin zu einer regenerativen Stromversorgung ausreichend. Bei einer durchschnittlichen betrieblichen Laufzeit von 35 Jahren kann der Übergang schrittweise gestaltet werden. Hierfür muss der jährliche Zubau an regenerativen Erzeugungskapazitäten bis etwa 2020 in moderatem Umfang weiter gesteigert werden.

32 Page 32 The German Wind Resource and Norwegian Hydro A PERFECT MATCH?

33 Page 33 THANK YOU! Lars Audun Fodstad Direct Mobile Statkraft Energy AS Lilleakerveien 6 P.O.Box 200 Lilleaker NO-0216 Oslo, Norway


Herunterladen ppt "The German Wind Resource and Norwegian Hydro – Interesting Possibilities Lars Audun Fodstad, SVP, Statkraft Energy AS, BMU 5th July 2010, Berlin."

Ähnliche Präsentationen


Google-Anzeigen