Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Kapitel V: Astronomische Beobachtungsmethoden 1. 2 Träger astrophysikalischer Informationen Allgemeines Problem: Beobachtung entfernter Systeme von der.

Ähnliche Präsentationen


Präsentation zum Thema: "Kapitel V: Astronomische Beobachtungsmethoden 1. 2 Träger astrophysikalischer Informationen Allgemeines Problem: Beobachtung entfernter Systeme von der."—  Präsentation transkript:

1 Kapitel V: Astronomische Beobachtungsmethoden 1

2 2 Träger astrophysikalischer Informationen Allgemeines Problem: Beobachtung entfernter Systeme von der Erde oder aus dem Erdorbit. Keine Manipulation des Systems durch Experimente möglich. Ausnahme: Naherkundung des Planetensystems durch Sonden / Lander. Photonen Neutrinos Geladene Teilchen (kosmische Strahlung) Staub / Meteorite Gravitationswellen

3 Kapitel V: Astronomische Beobachtungsmethoden 3 Das elektromagnetische Spektrum Überwiegend genutzte Informationsquelle Heute ganzes Spektrum von Radio – Gamma-Strahlung beobachtbar.

4 Kapitel V: Astronomische Beobachtungsmethoden 4 Das elektromagnetische Spektrum Erdgebundene Beobachtungen nur durch begrenzte Fenster möglich: Optisch (340 – 800 nm) Nah-Infrarot (800 – 5000 nm), einzelne Fenster Radio (ab ca. 1mm Wellenlänge) Hochenergie-Gammastrahlung (ab 30 GeV, indirekt durch optisches Fenster.

5 Kapitel V: Astronomische Beobachtungsmethoden 5 Grundlagen astronomischer Teleskope Anforderungen an astronomische Teleskope: Grosses Lichtsammelvermögen, bestimmt durch die Fläche der freien Öffnung. Hohes Auflösungsvermögen. Definiert durch der Winkelabstand zweier gerade noch trennbarer Objekte (z.B. Doppelstern). Im Wellenbild entsteht Abbildung durch die Interferenz der auf den Brennpunkt zulaufenden Wellen. Nur für unendlich große Öffnung ist die konstruktive Interferenz auf einen Punkt begrenzt. Interferenzmuster analog Einzelspalt.

6 Kapitel V: Astronomische Beobachtungsmethoden 6 Grundlagen astronomischer Teleskope Für kreisförmige Öffnung ensteht ein Muster von konzentrischen Ringen. Auflösungsvermögen wird i.a. durch den Winkelabstand der 1. Nullstelle definiert. / D (im Bogenmaß) Beugungsbegrenztes Auflösungsvermögen Wird im allgemeinen nicht erreicht, limitierende Faktoren sind optische Aberrationen und atmosphärische Unruhe (seeing).

7 Kapitel V: Astronomische Beobachtungsmethoden 7 Grundlagen astronomischer Teleskope Seeing wird durch die Halbwertsbreite des Bildes einer Punktquelle angegeben Beste Standorte (Chile, Hawaii) in sehr guten Nächten: ca. 0.5.

8 Kapitel V: Astronomische Beobachtungsmethoden 8 Optische Teleskope D/cmFläche [cm 2 ] Relativ zum Auge Beugungsbegrenztes Auflösungsvermöge n [Bogensekunden] Auge dunkeladaptiert Amateurteleskop VLT (von 4) (50 qm)

9 Kapitel V: Astronomische Beobachtungsmethoden 9 Optische Teleskope Historisch und bis heute wichtigster Wellenlängenbereich Auge: Wellenlängenbereich: nm Öffnung: bis 7 mm Auflösung: ca. 1 Bogenminute Grenzhelligkeit ca. 6 mag

10 Kapitel V: Astronomische Beobachtungsmethoden 10 Optische Teleskope Geschichte: Erstes Teleskop: Lippershey 1608 Erste astronomische Nutzung : Galileo Galilei 1609 Heutiges Linsenteleskop (Refraktor) beruht auf dem Kepler´schen Fernrohr: Sammellinsen als Objektiv und Okular Vergrösserung: V=f obj /f Oku Probleme von Linsenfernrohren: - Chromatische Aberration (Brechungsindex ist Funktion von - Durchmesser auf 1m begrenzt.

11 Kapitel V: Astronomische Beobachtungsmethoden 11 Optische Teleskope Erstes Spiegelteleskop: Newton (1668) Vorteile des Spiegelteleskops gegenüber Refraktor: Nur eine große optische Fläche zu schleifen. Kann auf der ganzen Fläche gelagert werden. Geringere Anforderungen and die Glasqualität Kompakte Bauweisen möglich Heutige Großtelekope ausschließlich Spiegel

12 Kapitel V: Astronomische Beobachtungsmethoden 12 Spiegelteleskope Newton-System: Parabolischer Primärspiegel, planer Sekundärspiegel Exakte Abbildung auf der optischen Achse, jedoch schnell wachsende Bildfehler off-axis. Cassegrain-System: Parabolischer Primärspiegel, hyperbolischer Sekundärspiegel Sehr kompakte Bauweise, Grundlage heutiger Großteleskope Abwandlung: Ritchey-Chrétien-System: hyperbolische Primär- und Sekundärspiegel. Grösseres korrigiertes Gesichtsfeld.

13 Kapitel V: Astronomische Beobachtungsmethoden 13 Spiegelteleskope Cassegrain-System

14 Kapitel V: Astronomische Beobachtungsmethoden 14 Spiegelteleskope Coudé-System: Realisierung eines ortsfesten Fokus durch mehrere Umlenkspiegel. Vorteil: Sehr schwere Instrumente (z.B. höchstauflösende Spektrographen müssen nicht mit dem Teleskop nachgeführt werden.

15 Kapitel V: Astronomische Beobachtungsmethoden 15 Spiegelteleskope Schmidt-Spiegel Sphärischer Hauptspiegel + dünne Korrekturlinse Fokalebene gekrümmt (durchgebogene Fotoplatte) Erlaubt sehr großes (einige Grad) Gesichtsfeld mit guter Abbildungsqualität Wurden für Himmelsdurchmusterungen verwendet (z.B Palomar Sky Survey an Nordhimmel, ESO Sky Survey am Südhimmel. Die digitalisierten Sky Survey Platten sind im Internet verfügbar und bis heute tägliches Handwerkszeug der Astronomen. Z.B.

16 Kapitel V: Astronomische Beobachtungsmethoden 16 Spiegelteleskope Strahlengang eines Schmidt- Spiegels. Im Fokus befindet sich eine durchgebogene Photoplatte


Herunterladen ppt "Kapitel V: Astronomische Beobachtungsmethoden 1. 2 Träger astrophysikalischer Informationen Allgemeines Problem: Beobachtung entfernter Systeme von der."

Ähnliche Präsentationen


Google-Anzeigen