Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Nachhaltiges Energie- und Stoffstrommanagement

Ähnliche Präsentationen


Präsentation zum Thema: "Nachhaltiges Energie- und Stoffstrommanagement"—  Präsentation transkript:

1 Nachhaltiges Energie- und Stoffstrommanagement
MSc Umweltwissenschaften, Uni Freiburg, SoSe 2016 Nachhaltiges Energie- und Stoffstrommanagement Stefan Pauliuk Input-Output-Analyse (IOA), Teil I: Grundlagen der IOA

2 Contents The industrial network
or why nobody knows how to make a pencil 2) Input-output models (IO models) 3) Environmentally extended IO models 4) Relation to other economic theories

3 “…not a single person on the face of this earth knows how to make me.”
Actually, millions of human beings have had a hand in my creation, no one of whom even knows more than a very few of the others. […] There isn't a single person in all these millions, including the president of the pencil company, who contributes more than a tiny, infinitesimal bit of know-how. ‘I, pencil’, by Leonard E. Read. 1958

4 “Neither the worker in the oil field nor the chemist nor the digger of graphite or clay nor any who mans or makes the ships or trains or trucks nor the one who runs the machine that does the knurling on my bit of metal nor the president of the company performs his singular task because he wants me. Each one wants me less, perhaps, than does a child in the first grade. Indeed, there are some among this vast multitude who never saw a pencil nor would they know how to use one. Their motivation is other than me. There is a fact still more astounding: The absence of a master mind, of anyone dictating or forcibly directing these countless actions which bring me into being. No trace of such a person can be found.” ‘I, pencil’, by Leonard E. Read. 1958

5 First schematic representation of the economic cycle
Closed system, all processes balanced! François Quesnay: Tableau économique (1758)

6 during industrial revolution
Specialization and complexity of the industrial network increased drastically during industrial revolution

7 How do major economic changes impact the industrial network?
First major application of input-output analysis was in WW II … can we use it to understand how we can peacefully transform the metabolism of our society?

8 2) The input-output table (IOT)
The IO-process model Each industry produces one unique product Each industry buys other products Each industry receives input of capital service and labour ‘value added’ (‘Wertschöpfung’) Each industry description is balanced if all flows are measured in the same unit.

9 2) The input-output table (IOT)
b) The IO-process model as vector Each industry is represented as one column vector First, all intermediate inputs Zij are listed Then, the value added vj Finally the sum total (= total output xj)

10 2) The input-output table (IOT)
c) The Industrial system as table Each industry is represented as one column vector All industries descriptions together form a table Each column descibes one balanced industrial process

11 2) The input-output table (IOT)
c) Matrix and vector representation of the Industrial system All inter-industry flows form matrix Z All value added entries form vector vT All output entries form vector xT Industry balance is written as matrix equation xT means x transposed (flipped around) e is a summation vector of only ones (1,1,1,1….1)

12 2) The input-output table (IOT)
d) Product markets All inter-industry flows form matrix Z All value added entries form vector vT All output entries form vector xT Industry balance is written as matrix equation xT means x transposed (flipped around) e is a summation vector of only ones (1,1,1,1….1)

13 2) The input-output table (IOT)
e) The complete system of industries and markets All inter-industry flows (Z) Column balance: industries Row balance: markets

14 2) The input-output table (IOT)
f) The corresponding system definition OR Source: DOI: /jiec.12306

15 2) The input-output model (IO)
f) The coefficient matrices We define:

16 2) The input-output model (IO)
g) The A-matrix explained Each column of A contains the products requirements PER UNIT OF OUTPUT These numbers represent the TECHNOGICAL RECIPE for each industry, and the coefficients of A are called TECHNICAL COEFFICIENTS A contains the ‚cookbook‘ of the entire industry

17 2) The input-output model (IO)
h) The B-matrix explained Each row i of B contains the USE SHARES of xi by the different industries These numbers describe the MARKET for each product, and the coefficients of B are called SALES COEFFICIENTS

18 2) The input-output model (IO)
i) The Leontief IO model With the help of A, the market balance can be reformulated  Market balance in terms of x, y, and A L is called ‚Leontief inverse‘.

19 2) The input-output model (IO)
j) The Ghosh IO model With the help of B, the industry balance can be reformulated  Industry balance in terms of x, v, and B G is called ‚Ghosh matrix‘.

20 2) The input-output model (IO)
k) The Leontief IO model explained With the help of the market balance, the Leontief IO model can be built step by step. Step Final demand Industry output Intermediate de-mand for next step y x0=I·y A·y 1 x1=A·y A2·y 2 x2=A2·y A3·y 3 x3=A3·y A4·y 4 x4=A4·y A5·y x=L·y Every power of A represents one tier in the supply chain! The Leontief IO model calculates the entire industrial output for the given final demand y. Reference: Chapter 8, provided on ILIAS

21 3) Environmentally extended IO
Adding emissions to the IOT Emissions or resource uptake from industrial processes are satellite accounts (Satelliteninventar), which means - they come in different units than Z - they do not enter the balance equ. Emissions are stored in satellite matrix E CO2 emissions, Mt/yr Hg emissions, kg/yr Water use, m³/yr

22 3) The system definition of environmentally extended IO

23 3) The environmentally extended Leontief IO model
b) Adding emissions to the Leontief IO The stressor matrix S contains the relative emissions (resources) per unit of output. Total emissions b of producing x are obtained by multiplying x with the stressor matrix Environmentally extended Leontief-IO model

24 4) Relation between Leontief-IO and mainstream economics
The Leontief IO model has the following central features: No elasticity of substitution of inputs (fixed technological coefficients!) No substitution between factors (labour and capital) Prices are independent from quantities (unit price of product x is unit prices of inputs weighted by technical coefficients) Leontief IO is a linear model  no difference between marginal and average costs! No law of diminishing returns These features make the Leontief IO a representative of classic economic theory. IO (and LCA) thus have a different view of the economic process than e.g., neoclassical economists

25 Nachhaltiges Energie- und Stoffstrommanagement
MSc Umweltwissenschaften, Uni Freiburg, SoSe 2016 Nachhaltiges Energie- und Stoffstrommanagement Stefan Pauliuk Input-Output-Analyse (IOA), Teil II: Multiregionale Input-Output-Analyse

26 Contents Some features of the IO Table
2) Multiregional IO (MRIO) theory 3) Multiregional IO (MRIO) application

27 Input output analysis in a nutshell

28 1) Some features of the IO table
Products can be recorded in different units. In this case, there is no industry balance but the market balance still holds. (Hence the Leontief IO model still works.)  Mixed unit IO

29 A and L in mixed units If the IOT has mixed units, A and L also have mixed units. That is no problem. [L] denotes the units (of measurement) of L. Same for A. Remember that no column balances can be calculated in a mixed unit system.

30 A and L can have different compartments
Often, similar products and industries are grouped together.

31 A and L can also cover different regions
… and, of course, different compartments in different regions. This multiregional version of A links industries from different regions to each other. It contains (and aggregated) description of the entire global industrial network.

32 How to build a multiregional A matrix
We need data on the use share of all products from all regions in all industries in all regions. E.g., the car industry in Germany would have to report how much steel they imported from Japan. For most industries, these data do not exist! Use proxy data: Single-region A-matrices (A1, A2, … from national statistical offices) Share of imports of each product used for each region (from national statistical offices) Bilateral trade data of products between regions (from UN ComTrade database)  Form trade coefficients matrices Crs (Crs(i) denotes share of product i from region r in total use of product i in region s) Reference: Miller and Blair, chapter 3.4, (ISBN , one copy in library)

33 How to build a multiregional IO model (MRIO model)
Same as for the single-regional case!

34 How to build an environmentally extended MRIO model
Same as for the single-regional case! Environmentally extended Leontief-MRIO model

35 How does the carbon footprint of nations look like?

36 What other footprints are out there?
The employment footprints of nations: /jiec.12104/abstract

37 Nachhaltiges Energie- und Stoffstrommanagement
MSc Umweltwissenschaften, Uni Freiburg, SoSe 2016 Nachhaltiges Energie- und Stoffstrommanagement Stefan Pauliuk Ökobilanzierung (Life cycle assessment, LCA), Teil I: Grundlagen der LCA, Sachbilanzen

38 Content Types of environmental assessment (Umweltbewertung)
Basic struture of life cycle assessment (Ökobilanz) Life cycle inventory modeling (Sachbilanz einer Ökobilanz)

39 Introductory example: ‘Fracking’
PROs domestic resource Large reserves Less CO2-intensive energy carrier compared to coal or oil CONs Solvent injection Land use Water pollution

40 Produkten, Prozessen etc. möglichst vollständig zu erfassen,
Umweltbewertung Eine Umweltbewertung ist der Versuch, die Umweltauswirkungen von Materialien, Produkten, Prozessen etc. möglichst vollständig zu erfassen, zu quantifizieren, und hinsichtlich eines Ziels zu bewerten. Die quantitative Systemanalyse beinhaltet die Erfassung und Quantifizierung der vielfältigen Auswirkungen und Wechselwirkungen von Stoff- und Energieflüssen in Raum und Zeit. Die Erfassung und Quantifizierung von Stoff- und Energieflüssen, die im Zusammenhang mit Produktion, Gebrauch, und Entsorgung von Materialien und Produkten stehen, ermöglicht es, die Umweltbewertung mit naturwissenschaftlichen Methoden durchzuführen. Normativer Aspekt: Bewertung hinsichtlich eines Ziels Industrial Ecology Programme

41 Quantitative Methoden und Aspekte der Umweltbewertung
Attibutiv (rückblickend) Prospektiv (vorrausschauend) Normale Betriebszustände Ausnahmezustände Ökobilanz (‚attributional LCA‘) Ökoprofil Ökoeffizienzanalyse Umweltverträglichkeitsprüfung Kosten-Nutzen Analyse Technikfolgenabschätzung ‚consequential LCA‘ Risikoanalyse Weitere Beispiele, Diskussion: Industrial Ecology Programme

42

43 Methodenbeispiel: Ökobilanz (Life Cycle Assessment, LCA)
Eine Ökobilanz ist eine Methode der Umweltbewertung. Sie beinhaltet die systematische quantitative Analyse der Umweltwirkungen von Produkten während des gesamten Lebenszyklusses. Anerkannt, weltweit verbreitet, standardisiert: ISO 14040/14044 Vier Stufen: Definition von Ziel und Untersuchungsrahmen (goal and scope) Sachbilanz (life cycle inventory analysis) Wirkungsabschätzung (life cycle impact assessment) Auswertung (interpretation) Industrial Ecology Programme

44 The four stages of an LCA, according to ISO 14040/44
LCA is the compilation and evaluation of the inputs, outputs, and the potential environmental impacts of products throughout their life cycle. LCA is a widely recognized and applied method, standardized as DIN EN ISO 14040/14044 Source: DIN EN ISO 14040

45 Definitionen für die Ökobilanz, Beispiel: Elektroauto
Zieldefinition Definitionen für die Ökobilanz, Beispiel: Elektroauto Stufe 1: Funktionseinheit: quantitative Beschreibung der Dienstleistung der Industrie an den Endnutzer.  Beispiel: 1000 km Fahrleistung mit einem Elektroauto, Standard-Fahrzyklus Stufe 1: Referenzfluß: Menge an Produkten, die nötig ist, um die in der Funktionseinheit beschriebene Dienstleistung zu liefern.  Beispiel: Kauf, Gebrauch und Entsorgung von Elektroautos ( km total), 200 kWh Stufe 2: Produktsystem: Teil der Wirtschaft, der mit der Bereitstellung eines gegebenen Referenzflusses befaßt ist. Beispiel: Produktion und Verwertung von Elektroautos, Stromerzeugung und –verteilung Stufe 3: Emissionen/Ressourcen: Flüsse von Materialien und Substanzen von der Umwelt in das Produktsystem und andersrum (Erz, Holz, CO2, Hg, …) Sachbilanz

46 Modellierung von Produktsystemen I
Generisches Prozessmodel der Ökobilanz: Der Einheitsprozess und das industrielle Netzwerk Process 1 Process 5 Hauptprodukt: Vorprodukte 945 kg Koks Unit Process: Primary steel production, Germany, 2008 Process 2 1 Tonne Stahl 1800 kWh Strom Emissionen/ Abfall: Process 6 400 kg Kalkstein Process 4 Natürliche Ressourcen 1.5 Tonnen Eisenerz 2.8 Tonnen CO2 Process 7 260 kg O2 300 kg Schlacke Process 3 Industrial Ecology Programme

47 Electricity generation
Modellierung von Produktsystemen II Das industrielle Netzwerk: siehe Tafelbild. Vorprodukte: Strom, Stahl, Dienstleistungen Produktsystem Car production Graphische Modellierung des Produktsystems Vorteile: Einfache Methode Weit verbreitet Graphische Darstellung des Produktsystems Nachteile: Wo aufhören? (Cut-off) Unübersichtlich nach mehreren Schritten Unhandlich bei vielen Prozessen Zentrale Prozesse (Stromerzeugung) tauchen mehrfach auf Referenzfluß Electricity generation Car shredder service Industrial Ecology Programme

48 Primary steel production,
Der wissenschaftliche Ansatz zur Modellierung von Produktsystemen I Vektordarstellung von Prozessen Objekt Einheit Stahlproduktion 1 Tonne Stahl Produkt: Ressourcen Erz t 1.5 O2 kg 260 Kohle Kalkstein 400 Produkte Koks 945 Strom kWh 1800 Stahl Ems. CO2 2.8 Schlacke 300 Hauptprodukt: Vorprodukte 945 kg Koks Unit Process: Primary steel production, Germany, 2008 1 Tonne Stahl 1800 kWh Strom Emissionen/ Abfall: 400 kg Kalkstein Natürliche Ressourcen 1.5 Tonnen Eisenerz 2.8 Tonnen CO2 260 kg O2 300 kg Schlacke Industrial Ecology Programme

49 Der wissenschaftliche Ansatz zur Modellierung von Produktsystemen II
Objekt Einheit (1 Tonne Stahl) Stahlproduktion Stromproduktion (1 kWh Strom) Koksproduktion (1 kg Koks) Ressourcen Erz t 1.5 O2 kg 260 0.85 0.18 Kohle 1.34 Kalkstein 400 0.03 Produkte Stahl Strom kWh 1800 0.15 0.1 Koks 945 Ems. CO2 2.8 0.0012 0.23 Schlacke 300 0.07 Matrixdarstellung des Produktsystems Produkte Format Ressourcen R r x p p x p b x p Inter-industrielle Verwendung A Produkte Emissionen B Industrial Ecology Programme

50 Berechnung des ökologischen Fußabrucks mit der Matrixmethode
Tafelbild Numerisches Beispiel in Excel Industrial Ecology Programme

51 Der wissenschaftliche Ansatz zur Modellierung von Produktsystemen III
Emissionen des Produktsystems Spezifische Emissionen der einzelnen Industrien Referenzfluß Leontief-IO-Modell der Industrie Industrial Ecology Programme

52 Typisches LCA-Ergebnis:

53

54 Nachhaltiges Energie- und Stoffstrommanagement
MSc Umweltwissenschaften, Uni Freiburg, SoSe 2016 Nachhaltiges Energie- und Stoffstrommanagement Stefan Pauliuk Ökobilanzierung (Life cycle assessment, LCA), Teil II: Wirkungsabschätzung

55 Content What is life cycle impact assessment and how does it work?
(Wie funktioniert die Wirkungsabschätzung?) 2) LCA in a single equation 3) Limits and criticism of LCA

56

57 The system definition of LCA

58 A brief overview of life cycle impact assessment (LCIA)
Welche Umweltauswirkungen? Welche Emissionen koppeln and welche Umweltmechanismen? Wie groß sind die Umweltauswirkungen der Emissionen des Produktsystems? Wie lassen sich die verschiedenen Umwelt- auswirkungen gruppieren und in Verbundindikatoren zusammenfassen?

59 A brief overview of life cycle impact assessment
A variety of impact assessment methods exists. Impact on ecosystems by emissions is measured by midpoint indicators (climate change, eutrophication, land use, water use, acidification). Midpoint indicators can be translated to endpoint indicators (damage to human health, ecosystems, and resource depletion) using a weighting scheme. Only potential impacts are assessed!

60 Example for an impact assessment method: ReCiPe 2008
18 ‘midpoint indicators’ 3 ‘endpoint indicators’ Recommended reading: Goedkoop et al. (2013): ReCiPe Provided on ILIAS

61 Example for an impact assessment method: ReCiPe 2008
Midpoints reflect direct environmental relevance (waste is not a category!) Midpoints are defined at the place where mechanisms common to a variety of substances come into play (radiative forcing, soil base cation saturation) Impact category indicators are measurable places in an impact pathway. Per-unit impacts are given by characterisation factors, which in turn require characterisation models.

62 What is a characterization factor?
The characterization step of LCIA quantitatively transforms each set of classified inventory flows via characterization factors (also called equivalency factors) to create impact category indicators relevant to resources, ecosystems, and human health. Ein Charakterisierungsfaktor ist ein biophysikalische Größe, welche die Auswirkungen für einen bestimmten Umweltmechanismus pro emittierter oder entzogener Menge an Emissionen oder Ressourcen angibt. Reference: Chapter 10

63 A prominent example for characterization factors: CO2-equivalents
Different GHG have different residence time in the atmosphere and they absorb infrared radiation at different rates  how to compare different GHG? GWPx,T: global warming potential of substance x with a time horizon T ax: radiative efficiency due to a unit increase in atmospheric abundance of the substance in question (i.e., W/(m2∙kg), ‘effectiveness of GHG’ [x(t)] is the time-dependent concentration of substance x, ar, [r(t)]: effectiveness and concentration of reference gas (CO2) GWPx,T x T 20 year, ‘individualist’ 100 year, ‘hierarchist’ 500 years ‘egalitarian’ CO2 1 CH4 72 25 7.6 N2O 289 298 153 SF6 16300 22800 32600 Application in LCIA: CO2-equivalent (GHG) = mass (GHG) * GWP (GHG,T) Recommended reading: Goedkoop et al. (2013): ReCiPe Provided on ILIAS

64 Another important impact category: Ionising radiation
Chain of mechanisms to quantify the impact of emissions of radioactive substances on human exposure (Dosis, midpoint) and damage (endpoint) Recommended reading: Goedkoop et al. (2013): ReCiPe Provided on ILIAS

65 The life cycle inventory stage in one line
End result, emissions to the environment b: ((I - A)-1 is called ‚Leontief-inverse‘ symbol: L) b = B ∙ (I - A)-1 ∙ y Reference: Chapter 8

66 An LCA in one line Environmental impacts i of a reference flow y on the midpoint level: i = C ∙ B ∙ (I - A)-1 ∙ y C: characterization factors, B: emissions, A: inter-industry requirements, y: reference flow Reference: Chapter 10

67 Limits and criticism of LCA
Investigate small reference flows only, no study of large-scale change possible No dynamic perspective: All flows throughout lifecycle are condensed into time-less indicator Despite the simple method, the knowledge behind LCA is very complex. In standard LCA tools this complexity is hidden and the tools seem to give simple answers Large uncertainties and data gaps, both for industrial processes and environmental mechanisms

68

69 Summary LCA is not LCIA! What is the difference?
Umweltauswirkungen des Produktsystems Spezifische Emissionen der einzelnen Industrien Referenzfluß Leontief-IO-Modell der Industrie Charakterisierungsfaktoren LCA is not LCIA! What is the difference?


Herunterladen ppt "Nachhaltiges Energie- und Stoffstrommanagement"

Ähnliche Präsentationen


Google-Anzeigen