Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Wie packt man Riesenmoleküle in eine kleine Schachtel?

Ähnliche Präsentationen


Präsentation zum Thema: "Wie packt man Riesenmoleküle in eine kleine Schachtel?"—  Präsentation transkript:

1 Wie packt man Riesenmoleküle in eine kleine Schachtel?
Die Struktur dichter Polymersysteme: Geometrie, Algorithmen, Software Matthias Müller Institut für Theoretische Informatik ETH Zürich Wie packt man Riesenmoleküle in eine kleine Schachtel?

2 Inhalt Chemischer Hintergrund Das Polymer Packungsproblem
Neue Algorithmen Resultate Schlussfolgerungen

3 Polymere Natürliche Polymere: Synthetische Polymere: Holz (Proteine)
Kautschuk (Gummi) Synthetische Polymere: Kunststoffe Kunstfasern (Nylon) Klebstoffe

4 Polymer-Moleküle Lange Ketten Grundeinheit: Monomere
Polyethylen: CH3(CH2)NCH3

5 Konformation Polymer-Glas Dicht Ineinander verknotet
Schwierig zu ändern (Relaxationszeit)

6 ? Computersimulation AtomistischesModell Moleküldynamik r(t1) r(t2)
r = (r1,…,rN) Positionen (Konformation) p = (p1,…,pN) Impulse V(r) Potentielle Energie Pico-Sekunden (10-12s) Relaxationszeit: Minuten bis Jahre Moleküldynamik r(t1) r(t2) r(t3) r(t4) Gesucht: “realistische“ Anfangsstruktur ?

7 Das Polymer-Packungsproblem
Gesucht: Konformation mit 1. Tiefer potentieller Energie 2. Korrekten räumlichen Eigenschaften (Winkelstatistik, End-zu-End-Abstände) 3. Geforderter Dichte Bisherige Methoden Grobe Schätzung Energie-Minimierung Räumliche Eigenschaften gehen verloren Keine “realistischen” Konformationen für Polystyrol, Polykarbonat, usw.

8 Neuer Ansatz Geometrisches Modell
1. Energie-Funktion 2. Räumliche Eigenschaften 3. Dichte A. Geometrische Bedingungen B. Torsionswinkelstatistik C. Periodische Randbedingungen Das Polymer-Packungsproblem (PP) ist NP-vollständig Geometrisch- kombinatorisches Optimierungsproblem: Finde Konformation, die A-C gleichzeitig erfüllt!

9 Geometrisches Modell rC rH Torsionswinkel- raum Intervalle Verteilung
Kugel-Modell

10 PolyPack Init torsions repeat forall Fi Optimize(Fi,limit) endfor
Max. Kollision Limite Winkel Init torsions repeat forall Fi Optimize(Fi,limit) endfor until (local) minimum Winkel Wahrscheinlichkeit

11 Horizont h Intramolekulare Kollision h Intermolekulare Kollision

12 Parallele Rotation (Parrot)
Orientierung & Rotation erhalten 3 Kompensationswinkel Hebel-Effekt Orientierungsänderung

13 Parallele Rotation (Parrot)

14 PolyPack Init torsions for h := 0 to hMAX do repeat forall Fi do
Optimize(Fi,limit,h) endfor until (local) minimum if max collision > limit then Shake endif

15 PolyPack Softwarepaket
Interface X / Motif Einzelschritt Batch ANSI C stdio.h / math.h Biosym File-formate (.mdf / .car)

16 Zeitkomplexität Testsystem: Polybead Atomdurchmesser: 0.90
Dichte: 0.90 Bindungswinkelverteilung prob(Q) a exp(k(1-cosQ)) k = 4

17 Test-System Polyethylen
10 Ketten (50 Monomere) 500 Torsionswinkel 1520 Atome Dichte: 0.90 g/cm3

18 Zeitkomplexität von PolyPack
t a Mm m = 1.5 +/- 0.2

19 Zeitkomplexität von PolyPack
t a Ln n = 2.8 +/- 0.2

20 Effekt des Horizonts

21 Effekt von ParRot

22 Qualität des Resultats
Maximale Überlappung: 22% (20 Läufe) Dichte: 0.90 g/cm3

23 Polystyrol Seitenketten Chiralität 10% trans-trans 1.05 g/cm3
9 Ketten (ps-40) 5778 Atome 1080 Torsionswinkel

24 Polystyrol 8% trans - trans

25 Polystyrol 23.6% trans - trans 12.5% trans - trans

26 Schlussfolgerungen Interdisziplinäres Arbeiten Geometrie als Filter
Parallele Rotation - ein universelles Instrument PolyPack als Software-Paket


Herunterladen ppt "Wie packt man Riesenmoleküle in eine kleine Schachtel?"

Ähnliche Präsentationen


Google-Anzeigen