Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Grundlagen & Experimentelle Suche!

Ähnliche Präsentationen


Präsentation zum Thema: "Grundlagen & Experimentelle Suche!"—  Präsentation transkript:

1 Grundlagen & Experimentelle Suche!
3/27/2017 Dunkle Materie Grundlagen & Experimentelle Suche! Tim Niels Plasa SS 2003

2 Der Rote Faden Warum soll dunkle Materie existieren?
Woraus könnte die dunkle Materie bestehen? Einige Experimente und ihre Ergebnisse Ausblick für die folgenden Jahre Tim Niels Plasa

3 25 Tim Niels Plasa 70

4 4 0.27 Nicht-baryonische DM 3 Tim Niels Plasa

5 Tim Niels Plasa

6 CDM = kalte dunkle Materie
nichtrelativistische Bewegung im Zeitalter der Galaxienentstehung HDM = Heiße dunkle Materie relativistische Bewegung während der Galaxienentstehung Tim Niels Plasa

7 Warum ist dunkle Materie notwendig?
Rotationskurven von Galaxien Messungen des Cobe und WMAP-Satelliten (Geometrie des Universums) Galaxienclusterdynamik Tim Niels Plasa

8 COBE & WMAP 7° Akkurate Messungen der CBR anisotropen Erscheinungen 1°
Ωtot = 1,02 ± 0.02 Ω Λ = 0.73 ±0.04 Ω M = 0.27 ±0.04 Ω baryonic = 0.04 ±0.004 Ω non baryonic = 0.23 ±0.04 Tim Niels Plasa

9 Kritische Dichte = 3H0/8pG = 11 p/m3
Wie kommt man auf die Massenverteilung ? Kritische Dichte = 3H0/8pG = 11 p/m3 Abzählen von Sternen W Sterne = 0, ,01 Nukleosynthese ,0095< W Bary<0,023 Dunkle Materie in Halos (Rot.kurven) W H>0,1 Relativbewegung der Galaxien W Ma>0,3 Ausbildung großer Strukturen W Ma>0,3 Supernova + Hintergrundstrahlung W tot = 1,02 ± 0,02 W L= 0,73 ± 0,04 Tim Niels Plasa

10 Dunkle Materie in Galaxien
- Galaxienbildung in bestimmter Reihenfolge (top-down Szenario) - Dunkle Materie in Halos - Baryonische Materie im Kern und in Scheibe - Was können wir über die Struktur der Halos sagen? Tim Niels Plasa

11 Scheibengalaxien machen etwa 20 - 30% der Galaxien
aus und eignen sich zum Beobachten der Eigenschaften der dunklen Halos - es handelt sich um flache Systeme, deren Rotation gegen die Gravitation gegensteuert. Tim Niels Plasa

12 NGC > NGC 891 Eine Spiralengalaxie <--- Tim Niels Plasa

13 Die Rotationskurven der Spiralgalxien
km/s kpc Die Rotationskurven der Spiralgalxien Meistens rotieren sie nicht gleichmäßig - es gibt eine Varianz der Rotationskurven abhängig von ihrer Leuchtverteilung. Dies hier sind zwei Extremfälle: Links: Typisch für Scheiben geringerer Leuchtkraft Rechts: Charakteristisch für hohe Leuchtkraft (wie die Milchstraße)

14 Was hält die Scheibe im Gleichgewicht ?
Der Hauptanteil der kinetisch Energie ist in der Rotation In der radialen Richtung sorgt die Gravitation für die radiale Beschleunigung, die für die fast kreisförmige Bewegung der Sterne und des Gas verantwortlich ist. In der vertikalen Richtung gleicht sich die Gravitation mit dem vertikalen Druckgradienten (der mit der zufälligen Bewegung der Sterne in der Scheibe zusammenhängt) aus Tim Niels Plasa

15 Das radiale Gleichgewicht der Scheiben
Mit der Newtonschen Mechanik kann man die Masse innerhalb eines bestimmten Radius bestimmen. wobei M(R) die eingeschlossene Masse im Radius R ist. Die Form von V(R) kann unterschiedlich sein. Für große Spiralgalxien wie der unseren, ist V(R) normalerweise flach, sodass die eingeschlossene Masse im sichtbaren Bereich M(R) R^2

16 Tim Niels Plasa

17 Tatsächliche Beobachtungen! Maximale Geschwindigkeit: 157 km/s
NGC 3198 Distanz: 9,2 Mpc Scheibenlänge:2,7 kpc Größter Radius: 30 kpc Maximale Geschwindigkeit: 157 km/s M(HI): 4,8 (109Sonnen) M(tot): 15,4 (1010Sonnen) M(dunkle M.): 4,1 (1010Sonnen) M(Halo): 1,9 (1010Sonnen)

18 Galaxie im sichtbaren Bereich Galaxie im Radiobereich
21cm Tim Niels Plasa

19 Das erwartete V(R) von Sternen und Gas fällt unter der beobachteten
Rotationskurven in den äußerenTei- len der Galaxie. Dies gilt für fast alle Spiralgalaxien mit den viel zu hohen Rotationskurven! Wir fassen zusammen, dass die leuchtende Materie die Ge- schwindigkeit innerhalb eines kleinen Radius dominiert, aber über diesem Radius erhält das dunkle Halo stark an Einfluss. Tim Niels Plasa

20 Maximale Scheibe minimales Halo Minimale Scheibe maximales Halo
Tim Niels Plasa Begeman 1987

21 Für die Zerlegung von NGC 3198 wurde das stellare M/L
Verhältnis als größtmöglich angenommen; ohne Bezug zu einem hohlen dunklen Halo - dies nennt man eine “maximum disk” (minimum halo) Zerlegung. Mehr als 1000 Galaxien sind auf diesem Wege analysiert worden - die Zerlegung sieht oft so aus wie für NGC 3198, mit vergleichbaren Peaks für die Geschwindigkeitsverteilungen von der Scheibe und dem dunklen Halo. Dark matter halo Es wird angenommen, dass dies schließlich teilweise auf die adiabatische Kompression des dunklen Halo durch die Baryonen zurückzu- führen ist, wenn Sie sich zusammenziehen, um die Scheibe zu formen. Das dunkle Materie Halo ist notwendig um die Rotationskurven zu erklären!

22 Galaxie separat - Galaxiecluster
Parameter für dunkle Halos(Dichte, Geschwindigkeitsverteilung, Form...) Seit etwa 1985 haben die Beobachter Modelle dunkler Halos entwickelt, denen ein Kern mit konstanter Dichte zugrunde liegt. Bei den gewöhnlichen Modelle gibt es eine Isothermale Sphären mit einem gut definierten Kern-Radius und zentraler Dichte, wobei r -2 bei einem weiten Radius => dadurch wird V(r) ~ konstant wie beobachtet.

23 Isothermale Sphäre

24 Es gibt auch die pseudo-isothermale Sphäre
o {1 + (r / rc ) 2 } -1 Benutzt man dieses Modell für den dunklen Halo von großen Galaxien wie der Milchstraße, so findet man o ~ 0.01 Solar- massen pc -3 und rc ~ 10 kpc Sie sind im Zentrum konstant dicht, mit  r - 2 CDM Simulationen produzieren immer wieder Halos, welche im Zentrum zugespitzt sind. Dieser Sachverhalt ist seit den 80ern bekannt (Navarro et al 1996 = NFW) bekannt mit der Dichte- verteilung: (r / rs ) - 1 {1 + (r/rs)} - 2 Diese sind im Zentrum zugespitzt, mit  r - 1

25 leuchtschwache Galaxien
Beispiel für etwa 60 leuchtschwache Galaxien NFW Optische Rotationskurven teilen uns die Abnahme der Dichte mit. NFW Halos haben  = -1 Flache Kerne haben  = 0 Verteilung der inneren Abnahme der Dichte  ~ r de Blok et al 2002

26 Man kann sagen, dass die Dichteverteilung der dunklen Halos
viel über dunkle Materie aussagt. Zum Beispiel könnte die bewiesene Präsenz von cusps einige dunkle Materie Partikel ausschließen (z.B. Gondolo 2000). Vielleicht ist auch die Theorie der CDM falsch. - mit sich selbst wechselwirkende dunkle Materie könnte ein flaches Zentrum (r) durch “heat transfer” in die kälteren zentralen Gebiete ermöglichen. (-->Kernkollaps wie in globularen Sternhaufen) (siehe Burkert 2000, Dalcanton & Hogan 2000) Alternative: Es gibt viele Wege zur Konvertierung von CDM cusps in zentrale Kerne, sodass wir bisher keine cusps gesehen haben ...

27 Kandidaten für die dunkle Materie
• Massive kompakte Halo Objekte (MACHOs) • Weakly Interacting Massive Particles ( WIMPs), Neutrinos & Axionen • Neue Physik Tim Niels Plasa

28 • Massive kompakte Halo Objekte (MACHOs)
• Geringe (sub- solare) Sternenmasse. Gewöhnliche baryonische Zusammenstellungen. • Gebrauch vom Gravitationslinseneffekt zum Studieren. • Möglicherweise verantwortlich für 25% bis 50% der dunklen Materie Tim Niels Plasa

29 Woraus bestehen Machos?
• Braune Zwerge • Neutronensterne • Weiße Zwerge • Planeten Tim Niels Plasa

30 Tim Niels Plasa

31 Massive Compact Halo Objects – MACHOs
Macho ist nicht direkt zu sehen. Aber es kann sich zwichen einem Himmelskörper und uns bewegen. MACHO fungiert dann als Gravitationslinse! Das Licht kommt verzerrt an, im Extremfall als Ring. a) Tim Niels Plasa

32 Zum Gravitationslinseneffekt
Verformung des Hintergrunds durch “unsichtbare” Materie im Vordergrund Ohne Macho Mit Macho Tim Niels Plasa

33 exponentiell aufgetragen
mag=Helligkeit exponentiell aufgetragen ==> Tim Niels Plasa

34 Dunkle Materie aus dem Teilchenzoo
• Weakly Interacting Massive Particles ( WIMPs) • Teilchen, die nicht aus dem Standard Modell kommen - insbesondere Neutralinos • Schwere (> 45GeV) neutrinoartige Teilchen von Eichtheorien. Tim Niels Plasa

35 Mögliche Erweiterung des Standard Modells: Supersymmetrie
Jedes Standard-Modell-Teilchen x hat einen supersymmetrischen Partner x z.B. electron  selectron neutrino  sneutrino gluon  gluino W boson  Wino ~ Tim Niels Plasa

36 Zugang zu den neuen Teilchen?
Hochenergie Strahlen CMS(LHC), ATLAS Kollisionsexperimente Tim Niels Plasa

37 Die MSSM – Parameter m - Higgsino Massen Parameter
M2 - Gaugino Massen Parameter mA - Masse des CP-odd Higgs bosons tan b - Verhältnis der Higgs Vakuum Erwartungswerte m0 - skalarer Massen Parameter Ab - trilinear coupling, bottom sector At - trilinear coupling, top sector Tim Niels Plasa

38 Neutralino als dunkle Materie
Nicht Baryonische kalte dunkle Materie Kandidaten SUSY WIMPs ( LSP : neutralino ) Neutralino Kleinste Masse, lineare Superposition von Photino, Zino, Higgsino Verschiedene Implementierungen der MSSM führt zu diversen Tim Niels Plasa Massenfenster: 60GeV < mc < TeV

39 Annahme c ist im galaktischen Halo präsent!
• c ist sein eigenes Antiteilchen => kann annihilieren und dabei Gammastrahlung produzieren, Antiprotonen, Positronen…. • Antimaterie wird nicht in großen Mengen durch Standardprozesse gebildet (sekundäre Produktion durch p + p --> p + X) • D.h., der zusätzliche Beitrag von exotischen Quellen (c c Annihilation) ist ein interessantes Signal • Produziert durch (eine Möglichkeit) c c --> q / g / Gauge Boson / Higgs Boson und nachfolgenden Zerfall und/oder Hadronisation. _ _

40 DM Neutralino Suche Wir schauen also nach Antiprotonen, Positronen, Gammastrahlung, die durch WIMP Annihilation entstanden ist. BESS, GLAST, ISS, AMS … Wir schauen also nach hochenergetischen Neutrinos als letzte Produkte von WIMP Annihilation in den Himmelskörpern(Erde, Sonne) SK, AMANDA, MACRO, … Wie messen die nuklearen Rückstöße, die durch die elastische Streuung der WIMPs an den Detektoren entsteht. DAMA, CDMS, Edelweiss, CRESST, UKDMC... Tim Niels Plasa

41 Signale von WIMPs Erdbewegung durch das Milchstraßenhalo erzeugt
asymmetrische charakteristische Verteilung der WIMPs. Erdorbitalbewegung um die Sonne (15 km/s) Jährliche Modulation der WIMP Wechselwirkungsrate. Tim Niels Plasa

42 Tim Niels Plasa

43 - = Untergrund, - = Untergrund + Signal
WIMP Dunkle Materie Annihilationen? Erweiterungen zum Standard Modell der Teilchenphysik geben uns also gute Kandidaten für galaktische dunkle Materie. Dies wäre dann eine völlig neue Form der Materie. Simulated response to 50 GeV side-entering g’s Glast-Simulation Wenn das wahr ist, gibt es beobachtbare Halo Annihilationen in mono- energetische Gammastrahlung. X q oder g g oder Z g Linen ? q X Antiproton oder Positron-Strukturen? - = Untergrund, - = Untergrund + Signal Tim Niels Plasa

44 Positronen Signale von Neutralinos
s=Vernichtungsquerschnitt r=Dichte n=Geschwindigkeit Positron Quellenfunktion In die Difffusionsgleichung wird das galaktische Modell einbezogen: Die Positronen treffen auf den solaren Wind. Dies wird noch in die Rechnung mit einbezogen. Am besten schaut man nach Positronenzerfällen, e+/(e+ + e-) um die Modulationseffekte zu minimieren.

45 Messung der Höhenstrahlung
mit AMS Tim Niels Plasa

46 Der HEAT-ÜBERSCHUSS _____________________________________________________ Man kann mit Ballons in großer Höhe Positronen detektieren Ergebnis: Es gibt mehr Positronen als angenommen Wimp-Annihilation als partielle mögliche Erklärung Tim Niels Plasa

47 Tim Niels Plasa

48 Tim Niels Plasa

49 Zusammenfassung Mit Standard MSSM und astrophysikalischen Annahmen sind die Positron-Raten in der Regel zu gering. HEAT hat eine Stelle bei ~8 GeV, die mit einem Signal von Neutralinos erklärt werden könnten. Aber der Peak kann trotzdem nicht völlig erklärt werden, nicht mal mit einer monochromatischen Quelle von Positronen. Hier sind daher weitere Untersuchungen in den nächsten Jahren notwendig! Blois: “I wouldn’t bet my life savings on super-symmetric dark matter as the explanation of the positron excess...” Tim Niels Plasa

50 Neutralinoeinfang und Annihilation
c rc Geschwindigkeitsverteilung sStreu GEinfang GVernichtung n WW n int. m int. Erde Detektor Sonne nm m Silk, Olive and Srednicki, ’85 Gaisser, Steigman & Tilav, ’86 Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman & Tilav, ’86

51 AMANDA Tim Niels Plasa

52 Tim Niels Plasa

53 Die Zukunft… IceCube IceCube: 80 strings 60 PMTs/string
Depth: Km Tim Niels Plasa

54 IceCube Konzept IceTop: 2 PMTs in a “pool” at the top of each string.
AMANDA South Pole IceTop Skiway IceTop: 2 PMTs in a “pool” at the top of each string. 3D air-shower detector Tim Niels Plasa

55 Direkte Suche nach Wimps Benötigt: große Detektormasse, Abschirmung
Tim Niels Plasa

56 Cryogenic Rare Event Search with Superconducting Thermometers
CRESST am Gran Sasso Cryogenic Rare Event Search with Superconducting Thermometers Tim Niels Plasa

57 Tim Niels Plasa

58 CDMS & EDELWEISS Simulation WW wird als Temperaturerhöhung
nachgewiesen Tim Niels Plasa

59 Edelweiss Juni 2002 Ausschließungsgrenzen ! Tim Niels Plasa

60 Zusammenfassungen Edelweiss kann das DAMA Signal zu 99.8% ausschließen. Der Positronenüberschuss in den HEAT Daten ist mit Neutralinos schwer zu erklären. Die Daten von HEAT sind relativ ungenau Tim Niels Plasa

61 Neutrinos 3.10 -2 < mn < 2eV
Zunächst aussichtsreichste Kandidaten, doch Galaxienbildung spricht dagegen rn = 600/cm3 Tim Niels Plasa

62 Um Rotationskurven in Galaxien beschreiben zu können,
müssen Neutrinos ein m > 10 eV haben! Tim Niels Plasa

63 Schlussfolgerung • Geringer Beitrag, wenn atmosphärische Neutrinomessungen korrekt sind, mn< 1eV. • Große galaktische Strukturen sind schwer mit Neutrino dominierter dunkler Materie in Einklang zu bringen. Tim Niels Plasa

64 Vorhergesagt von Peccei-Quinn
AXIONEN Vorhergesagt von Peccei-Quinn - hohe Teilchendichte - geringe Wechselwirkung - kleine Masse ( < 0,1 eV) - kein Spin ==> schwer nachweisbar g + g ´ => a Nachweis in Magnetfeld über Kopplung an ein verschränktes Photon, dass sich dann in ein reelles Photon umwandelt (Primakoff-Effekt) a + g ´ => g Tim Niels Plasa

65 Tim Niels Plasa

66 ? ? ? Neue Physik Versuche von Erweiterungen bestimmter Gesetze:
- Gravitation - Beschleunigung Tim Niels Plasa

67 Tim Niels Plasa


Herunterladen ppt "Grundlagen & Experimentelle Suche!"

Ähnliche Präsentationen


Google-Anzeigen