Die Präsentation wird geladen. Bitte warten

Die Präsentation wird geladen. Bitte warten

Herzlich willkommen zur Mathe in Tholey

Ähnliche Präsentationen


Präsentation zum Thema: "Herzlich willkommen zur Mathe in Tholey"—  Präsentation transkript:

1 Herzlich willkommen zur Mathe in Tholey
Zahlen Herzlich willkommen zur Mathe in Tholey Heute: Von R nach C und darüber hinaus

2 Der ursprüngliche Hintergrund: Fraktale

3 Fraktal in C Mit Hilfe von komplexen Zahlen

4 Oder

5 Fraktal in H Mit Hilfe von „Quaternionen“, hyperkomplexen Zahlen

6 Nichts geht ohne komplexe Zahlen
Also: Komplexe Zahlen und weitere Zahlbereiche

7 Ich weiß nicht, wie lange dies dauert.
Der Plan Eine Wiederholung: Von N nach R Was ist eigentlich R? R ist perfekt, fast Aber: x2+1 = 0 ist in R nicht lösbar Imaginäre Zahlen, komplexe Zahlen und ihr Preis Was leisten komplexe Zahlen? Weitere Zahlen: H und O Noch mehr Zahlen: Robinson und Conway Ich weiß nicht, wie lange dies dauert.

8 Der Stil Das Roossche Axiom: Es gibt keine dummen
Fragen, es gibt nur dumme Antworten. Fragen, Kommentare sind immer erwünscht.

9 Zahlen N = {1, 2, 3, 4, 5, 6, ....}: Natürliche Zahlen Subtraktion
Ganze Zahlen

10 Zahlen Z = {.., - 3, -2, -1, 0, 1, 2, 3, ..}: Ganze Zahlen Division
Q = {Brüche}: Rationale Zahlen („Quotienten“)

11 Die rationale Welt des Pythagoras
569– 475 v.Chr. Mathematiker, Philosoph, Zahlenmystiker.

12 Es gibt Zahlen, die keine Brüche sind

13

14 Neue Zahlen müssen her: Reelle Zahlen, R

15 R aus Q, wie geht das? Man muss die Löcher auf der
Zahlengeraden stopfen: „Vervollständigung“ Methoden: Cauchy-Folgen, Intervallschachtelungen, Dedekind-Schnitte.

16 Welche Eigenschaften bestimmen R?
In R kann man normal rechnen: R ist ein Körper (K) Alle Zahlen der Zahlengeraden kommen vor, keine Löcher: R ist vollständig (V) Man weiß, was links und rechts (des Nullpunkts) bedeuten: R ist angeordnet (A)

17 K: Normales Rechnen, Regeln der Addition (G,+)
a + b = b + a (a + b) + c = a + (b + c) a + 0 = a, 0 ist neutral a + x = 0 eindeutig lösbar (x = -a) Statt a + (-b) schreibt man a – b.

18 K: Normales Rechnen, Regeln der Multiplikation (G, ·)
a · b = b · a (a · b) · c = a · (b · c) a · 1 = a, 1 ist neutral a · x = 1 ist eindeutig lösbar (a ≠0, x = a-1). Statt a · (b)-1 schreibt man a /b.

19 K: Normales Rechnen, Regeln des Ausmultiplizierens (D)
a ·(b + c) = a ·b + a ·c

20 Welche Eigenschaften bestimmen R?
In R kann man normal rechnen: R ist ein Körper (K): Ok Alle Zahlen der Zahlengeraden kommen vor, keine Löcher: R ist vollständig (V) Man weiß, was links und rechts (des Nullpunkts) bedeuten: R ist angeordnet (A)

21 V: Die Zahlengerade wird erfasst
Alle Punkte der Zahlengeraden sind Zahlen, es gibt keine Löcher. Technisch anspruchsvoll. Es geht nicht ohne Grenzwerte.

22 Welche Eigenschaften bestimmen R?
In R kann man normal rechnen: R ist ein Körper (K): Ok Alle Zahlen der Zahlengeraden kommen vor, keine Löcher: R ist vollständig (V): Ok Man weiß, was links und rechts (des Nullpunkts) bedeuten: R ist angeordnet (A)

23 A: Die Zahlengerade ist angeordnet
(A1): Für jede Zahl x gilt: Entweder x = 0 oder x >0 oder -x > 0. (A2) Aus a > 0 und b > 0 folgt: a + b > 0 (A3) Aus a > 0 und b > 0 folgt: a ∙ b > 0

24 Welche Eigenschaften bestimmen R?
In R kann man normal rechnen: R ist ein Körper (K): Ok Alle Zahlen der Zahlengeraden kommen vor, keine Löcher: R ist vollständig (V): Ok Man weiß, was links und rechts (des Nullpunkts) bedeuten: R ist angeordnet (A): Ok

25 R ist einmalig Es gibt nur ein R:
Jede Struktur, die K, V, A erfüllt, ist gleich R. Aber: R hat kleine Mängel:

26 Ein Mangel Einfachste Gleichungen sind nicht lösbar:
x2 – 1 = 0: Zwei Lösungen x2 + 1 = 0: Keine Lösung oder sind wir zu dumm?

27 Satz: x2 + 1 = 0 ist in R nicht lösbar.
Beweis: x = 0 ist keine Lösung; Für x≠0 gilt: x2 > 0 1 = 12 > 0 Es folgt (A2): x2 + 1 > 0 In R gibt es keine √-1

28 Die hemdsärmelige Lösung:

29 Schöne neue Welt: Jede quadratische Gleichung ist lösbar.
Ein Beispiel:

30 Ein Beispiel

31 Ein kühner Täter: Cardano
1501 – 1576 Mathematiker, Arzt Klaute Tartaglia die berühmte Formel Rechnete mit Wurzeln aus negativen Zahlen

32 Auch er kühn: Bombelli 1526 – 1572 Lehrte als erster formal
korrektes Rechnen mit komplexen Zahlen

33 Ein Skeptiker: Descartes
1596 – 1650 Der große Philosoph und Mathematiker. Rechnete richtig mit komplexen Zahlen, gab zu, dass man noch keine Vorstellung von diesen Objekten habe.

34 Ganz skeptisch: Newton
1643 – 1727 Einer der Größten. Deutete das Auftreten komplexer Lösungen als Zeichen für Unlös- barkeit eines Problems

35 Genial: Euler 1707 - 1783 Größter Mathematiker seiner Zeit
Rechnet unbefangen, intuitiv richtig, souverän in C.

36 Eine von Eulers Großtaten

37 Der Trick: Ersetze x durch ix

38 Eulers berühmteste Formel

39 Offen: Wo liegt C? Wo lebt i? Sicher nicht auf der Zahlengeraden.
Wo leben die komplexen Zahlen? Die Antwort von Gauss

40 Gauss 1777 – 1855 Der größte Mathematiker

41 Multiplikation mit -1 (-1)·1 = -1: Drehung um 180° (-1)·1=i2 ·1
=i(i ·1) Zweifache Multiplikation mit i

42 Multiplikation mit i Multiplikation mit i: Drehung um 90° 1·i = i,
also ist i die Einheit auf der y-Achse, der imaginären Achse

43 Die Zahl z = 3 + 2i

44 Die Gausssche Zahlenebene

45 Rechnen in C Addition, Subtraktion, Multiplikation: Ohne Probleme.
Geometrisch interpretierbar Beispiel: Addition

46 Geometrische Addition

47 Division in C

48 Eigenschaften von C C ist Körper: Man kann ungeniert rechnen.
C ist vollständig: Die Ebene ist ohne Löcher. x2+1 = 0 ist in C lösbar. C ist nicht angeordnet! C ist „bewertet“, dies sind bestimmte Eigenschaften des Abstandes der Zahlen zum Nullpunkt. C ist dadurch einzigartig.

49 Beispiel:Polynome (normiert)
P1(x) = x + 3 = x1 + 3 P2(x) = x2 + 4x + 13 P3(x) = x3 + 4 x2 - 12x + 18 P4(x) = x4 - 4 x2 + 7x + 42

50 Formeln für Nullstellen:
Grad N: N = 1: x1 + p = 0 N = 2: x2 + px + q = 0 N = 3: x3 + px2 + qx +r = 0 N = 4: x4 + px3 + qx2 + rx + s = 0

51 N = 2: x2 + px + q = 0

52

53 N = 4: x4 + px3 + qx2 + rx + s = 0 Formel bekannt (nach 1700),
sehr groß! N = 5?

54 Nils Abel 1802 – 1829, Norweger, lebte ein kurzes Leben
in großer Armut, Mathematiker, genial. 1824: Für N=5 kann es keine Formel geben

55 Evariste Galois 1811 – 1832 Ein kurzes, schwieriges Leben.
Genial: Seine Galois- Theorie Man zeigt damit: Keine Formel für n≥5.

56 Aber: Fundamentalsatz der Algebra (FS)
Satz: (Gauss, Euler, Argand, …) Ein Polynom n-ter Ordnung besitzt N Nullstellen in C . Fürs Leben: Es gibt Dinge, die man nie bekommen kann.

57 Trost für Praktiker Näherungslösungen für Nullstellen:
Newton-Verfahren, Fixpunktmethoden, klappen auch bei komplexen Funktionen, die „Regula Falsi“ klappt nicht!

58 Aus dem FS: Es gibt drei dritte Wurzeln von 1

59 Als Appetizer: Ein Fraktal, bei dem dritte Wurzeln, und das
Newtonverfahren wichtig sind.

60 Für Bildungshungrige: Anwendungen von C
Mathematik: Funktionentheorie Analytische Zahlentheorie (ζ-Funktion) Physik: Relativitätstheorie (Minkowski-Raum) Quantentheorie (Schrödinger-Gl.) Strömungsmechanik Technik: Wechselstrom (man schreibt j statt i) MP3

61 Weitere Zahlen? Zahlen auf der Geraden: R Zahlen in der Ebene: C
Zahlen im Raum? Dreidimensionale Zahlen? Was erwarten wir von Zahlen?

62 Erwartungen an Zahlen:
Die Grundrechnungsarten müssen klappen. Es darf keine Löcher geben. (Vollständigkeit) Zahlen haben eine Größe (Länge, Betrag) Bremse: Division (vollst. Divisionsalgebren, sehr modern)

63 Heinz Hopf 1894 – 1971 Für mich einer der ganz Großen. Sein Ergebnis:
Richtige Zahlen haben die Dimension 1, 2, 4 oder 8. Also: Keine Zahlen im Raum

64 William Rowan Hamilton
1805 – 1865, Ire Mathematiker, Physiker Arrogant, starrsinnig, ließ nur Gauß und Grassmann gelten 1843: Quaternionen, 4-dimensionale Zahlen

65 Quaternionen u=-3 + 4i – 6j + 3k v= 2 + 3i + 8j - 8k u+v=
Übliches Rechnen

66 Quaternionen: H in der Math.:
H steht für „hyperkomplexe Systeme“ In H gilt nicht: ab = ba (Kommutativgesetz) H ist eindeutig bestimmt Fundamentalsatz der Algebra in H Viele Funktionen möglich in H, z.B ez

67 Anwendungen Dirac-Gleichung (alternativ: Paulimatrizen)
Beschreibung von Drehungen im Raum mittels H Computergrafik (Spiele, Fraktale, Quat 3D) Hamilton hat die Bedeutung von H total überschätzt (Prüfungsfach in Dublin!)

68 Cayley 1821 – 1895 Matrizenalgebra Fand 1845 die Oktaven, 8-dim.
Zahlen (1843 schon von Graves beschrieben)

69 Oktaven: 8-dim. Zahlen (O)
Die Regeln ab = ba (Kommutativgesetz) (ab)c = a(bc) (Assoziativgesetz) gelten nicht. O ist eindeutig bestimmt. Keine wichtigen Anwendungen, just for fun!

70 Zahlen nach Dimension und ihr Preis:
1-dimenional: Reelle Zahlen 2-dimensional: Komplexe Zahlen, Verlust der Anordnung 4-dimensional: Quaternionen, Verlust von ab = ba 8-dimensional: Oktionen, Verlust von (ab)c = a(bc) Mehr gibt es nicht in dieser Art, wenn man dividieren will.

71 Ist dies wirklich alles?
Natürlich nicht. Gegenmodelle: Non-Standard-Analysis Schmieden, Laugwitz, Robinson Spieltheoretische Modelle Conway-Spiele p-adische Zahlen (Hensel) Aber: Man zahlt immer einen Preis!

72 Abraham Robinson 1918 – 1974 Deutsch-jüdischer Mathematiker
Emigration 1933 Wichtige Beiträge zur angewandten Math.

73 Non-standard Analysis
Robinson 1961 nach Vorarbeiten von Schmieden, Laugwitz 250 Jahre nach Leibniz „Infinitesimale“ Technisch schwierig (Ultrafilter, spezielle Maße)

74 Conway Geb. 1937 in Liverpool Höchst kreativ: Geometrie,
Gruppentheorie

75 Conway: Zahlen und Spiele
Zwei Ideen (1976): Neue Dedekindschnitte Ordnung: Durch Spiele Vorteile: Infinitesimale, geht schnell, aber: Verdammt anspruchsvoll, vor allem technisch.

76 Wenn Sie mehr wissen wollen
Da werden Sie geholfen. Zur Geschichte der Mathematik: The MacTutor History of Mathematics archive

77 Literaturtipps: Ebbinghaus et al.: Zahlen Springer 2000 39,95 €
Conway/Guy: Zahlenzauber Birkhäuser 1997 vergriffen Berlekamp, Conway: Gewinnen.. Vieweg vergriffen

78 Fragen? Ich bitte darum.

79 Wie geht’s weiter? Fraktale: Der zweite Teil, Apfelmännchen und Co. Mit vielen Bildern, einfacher als heute. Wahrscheinlichkeitsrechnung: Was ist das? Mathe in Tholey wird weiter gehen, wenn Sie dies wünschen!

80 Zwei kleine Bitten: Teilen Sie uns mit, wie Sie unsere Veranstaltungen erleben. Schicken Sie Frau Backes-Burr oder mir eine kleine Bewertung. Schicken Sie uns Verbesserungsvorschläge.

81 Mathe ist einfach prima
Vielen Dank!


Herunterladen ppt "Herzlich willkommen zur Mathe in Tholey"

Ähnliche Präsentationen


Google-Anzeigen